187 research outputs found

    Exponential integrators: tensor structured problems and applications

    Get PDF
    The solution of stiff systems of Ordinary Differential Equations (ODEs), that typically arise after spatial discretization of many important evolutionary Partial Differential Equations (PDEs), constitutes a topic of wide interest in numerical analysis. A prominent way to numerically integrate such systems involves using exponential integrators. In general, these kinds of schemes do not require the solution of (non)linear systems but rather the action of the matrix exponential and of some specific exponential-like functions (known in the literature as phi-functions). In this PhD thesis we aim at presenting efficient tensor-based tools to approximate such actions, both from a theoretical and from a practical point of view, when the problem has an underlying Kronecker sum structure. Moreover, we investigate the application of exponential integrators to compute numerical solutions of important equations in various fields, such as plasma physics, mean-field optimal control and computational chemistry. In any case, we provide several numerical examples and we perform extensive simulations, eventually exploiting modern hardware architectures such as multi-core Central Processing Units (CPUs) and Graphic Processing Units (GPUs). The results globally show the effectiveness and the superiority of the different approaches proposed

    Computational modelling and optimal control of interacting particle systems: connecting dynamic density functional theory and PDE-constrained optimization

    Get PDF
    Processes that can be described by systems of interacting particles are ubiquitous in nature, society, and industry, ranging from animal flocking, the spread of diseases, and formation of opinions to nano-filtration, brewing, and printing. In real-world applications it is often relevant to not only model a process of interest, but to also optimize it in order to achieve a desired outcome with minimal resources, such as time, money, or energy. Mathematically, the dynamics of interacting particle systems can be described using Dynamic Density Functional Theory (DDFT). The resulting models are nonlinear, nonlocal partial differential equations (PDEs) that include convolution integral terms. Such terms also enter the naturally arising no-flux boundary conditions. Due to the nonlocal, nonlinear nature of such problems they are challenging both to analyse and solve numerically. In order to optimize processes that are modelled by PDEs, one can apply tools from PDE-constrained optimization. The aim here is to drive a quantity of interest towards a target state by varying a control variable. This is constrained by a PDE describing the process of interest, in which the control enters as a model parameter. Such problems can be tackled by deriving and solving the (first-order) optimality system, which couples the PDE model with a second PDE and an algebraic equation. Solving such a system numerically is challenging, since large matrices arise in its discretization, for which efficient solution strategies have to be found. Most work in PDE-constrained optimization addresses problems in which the control is applied linearly, and which are constrained by local, often linear PDEs, since introducing nonlinearity significantly increases the complexity in both the analysis and numerical solution of the optimization problem. However, in order to optimize real-world processes described by nonlinear, nonlocal DDFT models, one has to develop an optimal control framework for such models. The aim is to drive the particles to some desired distribution by applying control either linearly, through a particle source, or bilinearly, though an advective field. The optimization process is constrained by the DDFT model that describes how the particles move under the influence of advection, diffusion, external forces, and particle–particle interactions. In order to tackle this, the (first-order) optimality system is derived, which, since it involves nonlinear (integro-)PDEs that are coupled nonlocally in space and time, is significantly harder than in the standard case. Novel numerical methods are developed, effectively combining pseudospectral methods and iterative solvers, to efficiently and accurately solve such a system. In a next step this framework is extended so that it can capture and optimize industrially relevant processes, such as brewing and nano-filtration. In order to do so, extensions to both the DDFT model and the numerical method are made. Firstly, since industrial processes often involve tubes, funnels, channels, or tanks of various shapes, the PDE model itself, as well as the optimization problem, need to be solved on complicated domains. This is achieved by developing a novel spectral element approach that is compatible with both the PDE solver and the optimal control framework. Secondly, many industrial processes, such as nano-filtration, involve more than one type of particle. Therefore, the DDFT model is extended to describe multiple particle species. Finally, depending on the application of interest, additional physical effects need to be included in the model. In this thesis, to model sedimentation processes in brewing, the model is modified to capture volume exclusion effects

    A μ-mode BLAS approach for multidimensional tensor-structured problems

    Get PDF
    In this manuscript, we present a common tensor framework which can be used to generalize one-dimensional numerical tasks to arbitrary dimension d by means of tensor product formulas. This is useful, for example, in the context of multivariate interpolation, multidimensional function approximation using pseudospectral expansions and solution of stiff differential equations on tensor product domains. The key point to obtain an efficient-to-implement BLAS formulation consists in the suitable usage of the mu-mode product (also known as tensor-matrix product or mode-n product) and related operations, such as the Tucker operator. Their MathWorks MATLAB (R)/GNU Octave implementations are discussed in the paper, and collected in the package KronPACK. We present numerical results on experiments up to dimension six from different fields of numerical analysis, which show the effectiveness of the approach

    Compatible finite element methods for geophysical fluid dynamics

    Get PDF
    This article surveys research on the application of compatible finite element methods to large scale atmosphere and ocean simulation. Compatible finite element methods extend Arakawa's C-grid finite difference scheme to the finite element world. They are constructed from a discrete de Rham complex, which is a sequence of finite element spaces which are linked by the operators of differential calculus. The use of discrete de Rham complexes to solve partial differential equations is well established, but in this article we focus on the specifics of dynamical cores for simulating weather, oceans and climate. The most important consequence of the discrete de Rham complex is the Hodge-Helmholtz decomposition, which has been used to exclude the possibility of several types of spurious oscillations from linear equations of geophysical flow. This means that compatible finite element spaces provide a useful framework for building dynamical cores. In this article we introduce the main concepts of compatible finite element spaces, and discuss their wave propagation properties. We survey some methods for discretising the transport terms that arise in dynamical core equation systems, and provide some example discretisations, briefly discussing their iterative solution. Then we focus on the recent use of compatible finite element spaces in designing structure preserving methods, surveying variational discretisations, Poisson bracket discretisations, and consistent vorticity transport.Comment: correction of some typo

    Autonomous Trajectory Planning and Guidance Control for Launch Vehicles

    Get PDF
    This open access book highlights the autonomous and intelligent flight control of future launch vehicles for improving flight autonomy to plan ascent and descent trajectories onboard, and autonomously handle unexpected events or failures during the flight. Since the beginning of the twenty-first century, space launch activities worldwide have grown vigorously. Meanwhile, commercial launches also account for the booming trend. Unfortunately, the risk of space launches still exists and is gradually increasing in line with the rapidly rising launch activities and commercial rockets. In the history of space launches, propulsion and control systems are the two main contributors to launch failures. With the development of information technologies, the increase of the functional density of hardware products, the application of redundant or fault-tolerant solutions, and the improvement of the testability of avionics, the launch losses caused by control systems exhibit a downward trend, and the failures induced by propulsion systems become the focus of attention. Under these failures, the autonomous planning and guidance control may save the missions. This book focuses on the latest progress of relevant projects and academic studies of autonomous guidance, especially on some advanced methods which can be potentially real-time implemented in the future control system of launch vehicles. In Chapter 1, the prospect and technical challenges are summarized by reviewing the development of launch vehicles. Chapters 2 to 4 mainly focus on the flight in the ascent phase, in which the autonomous guidance is mainly reflected in the online planning. Chapters 5 and 6 mainly discuss the powered descent guidance technologies. Finally, since aerodynamic uncertainties exert a significant impact on the performance of the ascent / landing guidance control systems, the estimation of aerodynamic parameters, which are helpful to improve flight autonomy, is discussed in Chapter 7. The book serves as a valuable reference for researchers and engineers working on launch vehicles. It is also a timely source of information for graduate students interested in the subject
    • …
    corecore