7,781 research outputs found

    Primary thermometry triad at 6 mK in mesoscopic circuits

    Full text link
    Quantum physics emerge and develop as temperature is reduced. Although mesoscopic electrical circuits constitute an outstanding platform to explore quantum behavior, the challenge in cooling the electrons impedes their potential. The strong coupling of such micrometer-scale devices with the measurement lines, combined with the weak coupling to the substrate, makes them extremely difficult to thermalize below 10 mK and imposes in-situ thermometers. Here we demonstrate electronic quantum transport at 6 mK in micrometer-scale mesoscopic circuits. The thermometry methods are established by the comparison of three in-situ primary thermometers, each involving a different underlying physics. The employed combination of quantum shot noise, quantum back-action of a resistive circuit and conductance oscillations of a single-electron transistor covers a remarkably broad spectrum of mesoscopic phenomena. The experiment, performed in vacuum using a standard cryogen-free dilution refrigerator, paves the way toward the sub-millikelvin range with additional thermalization and refrigeration techniques.Comment: Article and Supplementar

    Vortex and gap generation in gauge models of graphene

    Full text link
    Effective quantum field theoretical continuum models for graphene are investigated. The models include a complex scalar field and a vector gauge field. Different gauge theories are considered and their gap patterns for the scalar, vector, and fermion excitations are investigated. Different gauge groups lead to different relations between the gaps, which can be used to experimentally distinguish the gauge theories. In this class of models the fermionic gap is a dynamic quantity. The finite-energy vortex solutions of the gauge models have the flux of the "magnetic field" quantized, making the Bohm-Aharonov effect active even when external electromagnetic fields are absent. The flux comes proportional to the scalar field angular momentum quantum number. The zero modes of the Dirac equation show that the gauge models considered here are compatible with fractionalization

    Anomalous dynamics of cell migration

    Full text link
    Cell movement, for example during embryogenesis or tumor metastasis, is a complex dynamical process resulting from an intricate interplay of multiple components of the cellular migration machinery. At first sight, the paths of migrating cells resemble those of thermally driven Brownian particles. However, cell migration is an active biological process putting a characterization in terms of normal Brownian motion into question. By analyzing the trajectories of wildtype and mutated epithelial (MDCK-F) cells we show experimentally that anomalous dynamics characterizes cell migration. A superdiffusive increase of the mean squared displacement, non-Gaussian spatial probability distributions, and power-law decays of the velocity autocorrelations are the basis for this interpretation. Almost all results can be explained with a fractional Klein- Kramers equation allowing the quantitative classification of cell migration by a few parameters. Thereby it discloses the influence and relative importance of individual components of the cellular migration apparatus to the behavior of the cell as a whole.Comment: 20 pages, 3 figures, 1 tabl

    Josephson dynamics for coupled polariton modes under the atom-field interaction in the cavity

    Full text link
    We consider a new approach to the problem of Bose-Einstein condensation (BEC) of polaritons for atom-field interaction under the strong coupling regime in the cavity. We investigate the dynamics of two macroscopically populated polariton modes corresponding to the upper and lower branch energy states coupled via Kerr-like nonlinearity of atomic medium. We found out the dispersion relations for new type of collective excitations in the system under consideration. Various temporal regimes like linear (nonlinear) Josephson transition and/or Rabi oscillations, macroscopic quantum self-trapping (MQST) dynamics for population imbalance of polariton modes are predicted. We also examine the switching properties for time-averaged population imbalance depending on initial conditions, effective nonlinear parameter of atomic medium and kinetic energy of low-branch polaritons.Comment: 10 pages, 6 postscript figures, uses svjour.cl

    Bosonic Anomalies, Induced Fractional Quantum Numbers and Degenerate Zero Modes: the anomalous edge physics of Symmetry-Protected Topological States

    Get PDF
    The boundary of symmetry-protected topological states (SPTs) can harbor new quantum anomaly phenomena. In this work, we characterize the bosonic anomalies introduced by the 1+1D non-onsite-symmetric gapless edge modes of 2+1D bulk bosonic SPTs with a generic finite Abelian group symmetry (isomorphic to G=iZNi=ZN1×ZN2×ZN3×...G=\prod_i Z_{N_i}=Z_{N_1} \times Z_{N_2} \times Z_{N_3} \times ...). We demonstrate that some classes of SPTs (termed "Type II") trap fractional quantum numbers (such as fractional ZNZ_N charges) at the 0D kink of the symmetry-breaking domain walls; while some classes of SPTs (termed "Type III") have degenerate zero energy modes (carrying the projective representation protected by the unbroken part of the symmetry), either near the 0D kink of a symmetry-breaking domain wall, or on a symmetry-preserving 1D system dimensionally reduced from a thin 2D tube with a monodromy defect 1D line embedded. More generally, the energy spectrum and conformal dimensions of gapless edge modes under an external gauge flux insertion (or twisted by a branch cut, i.e., a monodromy defect line) through the 1D ring can distinguish many SPT classes. We provide a manifest correspondence from the physical phenomena, the induced fractional quantum number and the zero energy mode degeneracy, to the mathematical concept of cocycles that appears in the group cohomology classification of SPTs, thus achieving a concrete physical materialization of the cocycles. The aforementioned edge properties are formulated in terms of a long wavelength continuum field theory involving scalar chiral bosons, as well as in terms of Matrix Product Operators and discrete quantum lattice models. Our lattice approach yields a regularization with anomalous non-onsite symmetry for the field theory description. We also formulate some bosonic anomalies in terms of the Goldstone-Wilczek formula.Comment: 29 pages, 12 Figures. v3 clarification to be accessible for both HEP and CMT. Thanks to Roman Jackiw for introducing new Ref
    corecore