461 research outputs found

    A Brief Survey on Intelligent Swarm-Based Algorithms for Solving Optimization Problems

    Get PDF
    This chapter presents an overview of optimization techniques followed by a brief survey on several swarm-based natural inspired algorithms which were introduced in the last decade. These techniques were inspired by the natural processes of plants, foraging behaviors of insects and social behaviors of animals. These swam intelligent methods have been tested on various standard benchmark problems and are capable in solving a wide range of optimization issues including stochastic, robust and dynamic problems

    Benchmark tests on heuristic methods in the darts game

    Get PDF
    Games are among problems that can be reduced to optimization, for which one of the most universal and productive solving method is a heuristic approach. In this article we present results of benchmark tests on using 5 heuristic methods to solve a physical model of the darts game. Discussion of the scores and conclusions from the research have shown that application of heuristic methods can simulate artificial intelligence as a regular player with very good results

    Metric learning with convex optimization

    Get PDF

    Enhancing FastSLAM 2.0 performance using a DE Algorithm with Multi-mutation Strategies

    Get PDF
    FastSLAM 2.0 is considered one of the popular approaches that utilizes a Rao-Blackwellized particle filter for solving simultaneous localization and mapping (SLAM) problems. It is computationally efficient, robust and can be used to handle large and complex environments. However, the conventional FastSLAM 2.0 algorithm is known to degenerate over time in terms of accuracy because of the particle depletion problem that arises in the resampling phase. In this work, we introduce an enhanced variant of the FastSLAM 2.0 algorithm based on an enhanced differential evolution (DE) algorithm with multi-mutation strategies to improve its performance and reduce the effect of the particle depletion problem. The Enhanced DE algorithm is used to optimize the particle weights and conserve diversity among particles. A comparison has been made with other two common algorithms to evaluate the performance of the proposed algorithm in estimating the robot and landmarks positions for a SLAM problem. Results are accomplished in terms of accuracy represented by the positioning errors of robot and landmark positions as well as their root mean square errors. All results show that the proposed algorithm is more accurate than the other compared algorithms in estimating the robot and landmark positions for all the considered cases. It can reduce the effect of the particle depletion problem and improve the performance of the FastSLAM 2.0 algorithm in solving SLAM problem
    • …
    corecore