286 research outputs found

    Fractional Laguerre spectral methods and their applications to fractional differential equations on unbounded domain

    Get PDF
    In this article, we first introduce a singular fractional Sturm-Liouville problem (SFSLP) on unbounded domain. The associated fractional differential operator is both Weyl and Caputo type. The properties of spectral data for fractional operator on unbounded domain have been investigated. Moreover, it has been shown that the eigenvalues of the singular problem are real-valued and the corresponding eigenfunctions are orthogonal. The analytical eigensolutions of SFSLP are obtained and defined as generalized Laguerre fractional-polynomials. The optimal approximation of such generalized Laguerre fractional-polynomials in suitably weighted Sobolev spaces involving fractional derivatives has been derived. We construct an efficient generalized Laguerre fractional-polynomials-Petrov–Galerkin methods for a class of fractional initial value problems and fractional boundary value problems. As a numerical example, we examine space fractional advection–diffusion equation. Our theoretical results are confirmed by associated numerical results

    Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains

    Full text link
    Many PDEs involving fractional Laplacian are naturally set in unbounded domains with underlying solutions decay very slowly, subject to certain power laws. Their numerical solutions are under-explored. This paper aims at developing accurate spectral methods using rational basis (or modified mapped Gegenbauer functions) for such models in unbounded domains. The main building block of the spectral algorithms is the explicit representations for the Fourier transform and fractional Laplacian of the rational basis, derived from some useful integral identites related to modified Bessel functions. With these at our disposal, we can construct rational spectral-Galerkin and direct collocation schemes by pre-computing the associated fractional differentiation matrices. We obtain optimal error estimates of rational spectral approximation in the fractional Sobolev spaces, and analyze the optimal convergence of the proposed Galerkin scheme. We also provide ample numerical results to show that the rational method outperforms the Hermite function approach

    Numerical approximations for population growth model by Rational Chebyshev and Hermite Functions collocation approach: A comparison

    Full text link
    This paper aims to compare rational Chebyshev (RC) and Hermite functions (HF) collocation approach to solve the Volterra's model for population growth of a species within a closed system. This model is a nonlinear integro-differential equation where the integral term represents the effect of toxin. This approach is based on orthogonal functions which will be defined. The collocation method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare these methods with some other numerical results and show that the present approach is applicable for solving nonlinear integro-differential equations.Comment: 18 pages, 5 figures; Published online in the journal of "Mathematical Methods in the Applied Sciences

    A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions

    Full text link
    In this paper, the fractional order of rational Bessel functions collocation method (FRBC) to solve Thomas-Fermi equation which is defined in the semi-infinite domain and has singularity at x=0x = 0 and its boundary condition occurs at infinity, have been introduced. We solve the problem on semi-infinite domain without any domain truncation or transformation of the domain of the problem to a finite domain. This approach at first, obtains a sequence of linear differential equations by using the quasilinearization method (QLM), then at each iteration solves it by FRBC method. To illustrate the reliability of this work, we compare the numerical results of the present method with some well-known results in other to show that the new method is accurate, efficient and applicable

    A Modified Generalized Laguerre-Gauss Collocation Method for Fractional Neutral Functional-Differential Equations on the Half-Line

    Get PDF
    The modified generalized Laguerre-Gauss collocation (MGLC) method is applied to obtain an approximate solution of fractional neutral functional-differential equations with proportional delays on the half-line. The proposed technique is based on modified generalized Laguerre polynomials and Gauss quadrature integration of such polynomials. The main advantage of the present method is to reduce the solution of fractional neutral functional-differential equations into a system of algebraic equations. Reasonable numerical results are achieved by choosing few modified generalized Laguerre-Gauss collocation points. Numerical results demonstrate the accuracy, efficiency, and versatility of the proposed method on the half-line

    An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method

    Full text link
    In this paper we propose a collocation method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-infinite domain. They are categorized as singular initial value problems. The proposed approach is based on a Hermite function collocation (HFC) method. To illustrate the reliability of the method, some special cases of the equations are solved as test examples. The new method reduces the solution of a problem to the solution of a system of algebraic equations. Hermite functions have prefect properties that make them useful to achieve this goal. We compare the present work with some well-known results and show that the new method is efficient and applicable.Comment: 34 pages, 13 figures, Published in "Computer Physics Communications

    Spectral decomposition of fractional operators and a reflected stable semigroup

    Get PDF
    In this paper, we provide the spectral decomposition in Hilbert space of the C0\mathcal{C}_0-semigroup PP and its adjoint \hatP having as generator, respectively, the Caputo and the right-sided Riemann-Liouville fractional derivatives of index 1<α<21<\alpha<2. These linear operators, which are non-local and non-self-adjoint, appear in many recent studies in applied mathematics and also arise as the infinitesimal generators of some substantial processes such as the reflected spectrally negative α\alpha-stable process. Our approach relies on intertwining relations that we establish between these semigroups and the semigroup of a Bessel type process whose generator is a self-adjoint second order differential operator. In particular, from this commutation relation, we characterize the positive real axis as the continuous point spectrum of PP and provide a power series representation of the corresponding eigenfunctions. We also identify the positive real axis as the residual spectrum of the adjoint operator \hatP and elucidates its role in the spectral decomposition of these operators. By resorting to the concept of continuous frames, we proceed by investigating the domain of the spectral operators and derive two representations for the heat kernels of these semigroups. As a by-product, we also obtain regularity properties for these latter and also for the solution of the associated Cauchy problem.Comment: in pres
    • …
    corecore