1,383 research outputs found

    Coexistence of generalized synchronization and inverse generalized synchronization between chaotic and hyperchaotic systems

    Get PDF
    In this paper, we present new schemes to synchronize different dimensional chaotic and hyperchaotic systems. Based on coexistence of generalized synchronization (GS) and inverse generalized synchronization (IGS), a new type of hybrid chaos synchronization is constructed. Using Lyapunov stability theory and stability theory of linear continuous-time systems, some sufficient conditions are derived to prove the coexistence of generalized synchronization and inverse generalized synchronization between 3D master chaotic system and 4D slave hyperchaotic system. Finally, two numerical examples are illustrated with the aim to show the effectiveness of the approaches developed herein

    A Robust Control Method for Q

    Get PDF
    A robust control approach is presented to study the problem of Q-S synchronization between Integer-order and fractional-order chaotic systems with different dimensions. Based on Laplace transformation and stability theory of linear integer-order dynamical systems, a new control law is proposed to guarantee the Q-S synchronization between n-dimensional integer-order master system and m-dimensional fractional-order slave system. This paper provides further contribution to the topic of Q-S chaos synchronization between integer-order and fractional-order systems and introduces a general control scheme that can be applied to wide classes of chaotic and hyperchaotic systems. Illustrative example and numerical simulations are used to show the effectiveness of the proposed method

    Fractional dynamics of systems with long-range interaction

    Full text link
    We consider one-dimensional chain of coupled linear and nonlinear oscillators with long-range power wise interaction defined by a term proportional to 1/|n-m|^{\alpha+1}. Continuous medium equation for this system can be obtained in the so-called infrared limit when the wave number tends to zero. We construct a transform operator that maps the system of large number of ordinary differential equations of motion of the particles into a partial differential equation with the Riesz fractional derivative of order \alpha, when 0<\alpha<2. Few models of coupled oscillators are considered and their synchronized states and localized structures are discussed in details. Particularly, we discuss some solutions of time-dependent fractional Ginzburg-Landau (or nonlinear Schrodinger) equation.Comment: arXiv admin note: substantial overlap with arXiv:nlin/051201

    Fractional calculus ties the microscopic and macroscopic scales of complex network dynamics

    Full text link
    A two-state master equation based decision making model has been shown to generate phase transitions, to be topologically complex and to manifest temporal complexity through an inverse power-law probability distribution function in the switching times between the two critical states of consensus. These properties are entailed by the fundamental assumption that the network elements in the decision making model imperfectly imitate one another. The process of subordination establishes that a single network element can be described by a fractional master equation whose analytic solution yields the observed inverse power-law probability distribution obtained by numerical integration of the two-state master equation to a high degree of accuracy

    Hidden homogeneous extreme multistability of a fractional-order hyperchaotic discrete-time system: chaos, initial offset boosting, amplitude control, control, and synchronization

    Get PDF
    Fractional order maps are a hot research topic; many new mathematical models are suitable for developing new applications in different areas of science and engineering. In this paper, a new class of a 2D fractional hyperchaotic map is introduced using the Caputo-like difference operator. The hyperchaotic map has no equilibrium and lines of equilibrium points, depending on the values of the system parameters. All of the chaotic attractors generated by the proposed fractional map are hidden. The system dynamics are analyzed via bifurcation diagrams, Lyapunov exponents, and phase portraits for different values of the fractional order. The results show that the fractional map has rich dynamical behavior, including hidden homogeneous multistability and offset boosting. The paper also illustrates a novel theorem, which assures that two hyperchaotic fractional discrete systems achieve synchronized dynamics using very simple linear control laws. Finally, the chaotic dynamics of the proposed system are stabilized at the origin via a suitable controller

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic
    corecore