678 research outputs found

    Toward Early-Warning Detection of Gravitational Waves from Compact Binary Coalescence

    Get PDF
    Rapid detection of compact binary coalescence (CBC) with a network of advanced gravitational-wave detectors will offer a unique opportunity for multi-messenger astronomy. Prompt detection alerts for the astronomical community might make it possible to observe the onset of electromagnetic emission from (CBC). We demonstrate a computationally practical filtering strategy that could produce early-warning triggers before gravitational radiation from the final merger has arrived at the detectors.Comment: 16 pages, 7 figures, published in ApJ. Reformatted preprint with emulateap

    Effects of Multirate Systems on the Statistical Properties of Random Signals

    Get PDF
    In multirate digital signal processing, we often encounter time-varying linear systems such as decimators, interpolators, and modulators. In many applications, these building blocks are interconnected with linear filters to form more complicated systems. It is often necessary to understand the way in which the statistical behavior of a signal changes as it passes through such systems. While some issues in this context have an obvious answer, the analysis becomes more involved with complicated interconnections. For example, consider this question: if we pass a cyclostationary signal with period K through a fractional sampling rate-changing device (implemented with an interpolator, a nonideal low-pass filter and a decimator), what can we say about the statistical properties of the output? How does the behavior change if the filter is replaced by an ideal low-pass filter? In this paper, we answer questions of this nature. As an application, we consider a new adaptive filtering structure, which is well suited for the identification of band-limited channels. This structure exploits the band-limited nature of the channel, and embeds the adaptive filter into a multirate system. The advantages are that the adaptive filter has a smaller length, and the adaptation as well as the filtering are performed at a lower rate. Using the theory developed in this paper, we show that a matrix adaptive filter (dimension determined by the decimator and interpolator) gives better performance in terms of lower error energy at convergence than a traditional adaptive filter. Even though matrix adaptive filters are, in general, computationally more expensive, they offer a performance bound that can be used as a yardstick to judge more practical "scalar multirate adaptation" schemes

    Image interpolation using Shearlet based iterative refinement

    Get PDF
    This paper proposes an image interpolation algorithm exploiting sparse representation for natural images. It involves three main steps: (a) obtaining an initial estimate of the high resolution image using linear methods like FIR filtering, (b) promoting sparsity in a selected dictionary through iterative thresholding, and (c) extracting high frequency information from the approximation to refine the initial estimate. For the sparse modeling, a shearlet dictionary is chosen to yield a multiscale directional representation. The proposed algorithm is compared to several state-of-the-art methods to assess its objective as well as subjective performance. Compared to the cubic spline interpolation method, an average PSNR gain of around 0.8 dB is observed over a dataset of 200 images

    Time-delay interferometric ranging for LISA: Statistical analysis of bias-free ranging using laser noise minimization

    Get PDF
    Die Laser Interferometer Space Antenna (LISA) ist eine Mission der europĂ€ischen Weltraumagentur (ESA) zur Detektion von Gravitationswellen im Frequenzbereich zwischen 10^-4 Hz und 1 Hz. Gravitationswellen induzieren relative AbstandsĂ€nderungen, die LISA mithilfe von Laserinterferometrie mit PicometerprĂ€zision misst. Ein großes Problem hierbei ist das Frequenzrauschen der Laser. Um dieses zu unterdrĂŒcken, ist es notwendig, mithilfe eines Algorithmus namens TDI (engl. time-delay interferometry), virtuelle Interferometer mit gleichlangen Armen zu konstruieren, wie z.B. das klassische Michelson-Interferometer. In dieser Arbeit untersuchen wir die Performanz von TDI unter realistischen Bedingungen und identifizieren verschiedene Kopplungsmechanismen des Laserfrequenzrauschens. Als erstes betrachten wir die Datenverarbeitung an Bord der Satelliten, die benötigt wird, um die Abtastrate der interferometrischen Messungen zu reduzieren. HierfĂŒr sind Anti-Alias-Filter vorgesehen, die der Faltung von Laserrauschleistung in das Beobachtungsband vorbeugen. Außerdem wirkt sich die Ebenheit der Filter auf die EffektivitĂ€t von TDI aus (engl. flexing-filtering-effect). Dieser Effekt ist bereits in der Literatur beschrieben und wir demonstrieren in dieser Arbeit die Möglichkeit, ihn mithilfe von Kompensationsfiltern effektiv zu reduzieren. Als zweites betrachten wir Kopplungsmechanismen von Laserfrequenzrauschen im TDI-Algorithmus selbst. Fehler in der Interpolation der interferometrischen Messungen und Ungenauigkeiten in den absoluten Abstandsmessungen zwischen den Satelliten fĂŒhren ebenfalls zu einer unzureichenden Reduzierung des Laserfrequenzrauschens. Wir beschreiben die oben genannten Kopplungsmechanismen analytisch und validieren die zugrundeliegenden Modelle mithilfe von numerischen Simulationen. Das tiefere VerstĂ€ndnis dieser Residuen ermöglicht es uns, geeignete instrumentelle Parameter zu wĂ€hlen, die von hoher Relevanz fĂŒr das Missionsdesign von LISA sind. Des Weiteren beschĂ€ftigen wir uns in dieser Arbeit mit der möglichst genauen Bestimmung der absoluten AbstĂ€nden zwischen den Satelliten, die fĂŒr den TDI Algorithmus erforderlich sind. HierfĂŒr werden die Abstandsinformationen aus den SeitenbĂ€ndern und der PRN-Modulation (engl. pseudo-random noise) kombiniert. Wir zeigen, dass die PRN-Messung von systematischen Verzerrungen betroffen ist, die zu Laserrauschresiduen in den TDI-Variablen fĂŒhren. Um diesen Fehler zu korrigieren, schlagen wir als zusĂ€tzliche Abstandsmessung TDI-Ranging (TDI-R) vor. TDI-R ist zwar ungenauer, aber frei von systematischen Verzerrungen und kann daher zur Kalibrierung der PRN-Messungen herangezogen werden. Wir prĂ€sentieren in dieser Arbeit eine ausfĂŒhrliche statistische Studie, um die Performanz von TDI-R zu charakterisieren. DafĂŒr formulieren wir die Likelihood-Funktion der interferometrischen Messungen und berechnen die Fisher-Informationsmatrix, um die theoretisch mögliche untere Grenze der SchĂ€tzvarianz zu finden. Diese verhĂ€lt sich invers proportional zur Integrationszeit und dem VerhĂ€ltnis von SekundĂ€rrauschleistung, die die interferometrische Messung fundamental limitiert, und Laserrauschleistung. ZusĂ€tzlich validieren wir die analytische untere Grenze der SchĂ€tzvarianz mithilfe von numerischen Simulationen und zeigen damit, dass unsere Implementierung von TDI-R optimal ist. Der entwickelte TDI-R-Algorithmus wird Teil der Datenverarbeitungspipeline sein und KonsistenzprĂŒfungen und Kalibrierung der primĂ€ren Abstandsmessmethoden ermöglichen.The Laser Interferometer Space Antenna (LISA) is a future ESA-led space-based observatory to explore the gravitational universe in the frequency band between 10^-4 Hz and 1 Hz. LISA implements picometer-precise inter-satellite ranging to measure tiny ripples in spacetime induced by gravitational waves (GWs). However, the single-link measurements are dominated by laser frequency noise, which is about nine orders of magnitude larger than the GW signals. Therefore, in post-processing, the time-delay interferometry (TDI) algorithm is used to synthesize virtual equal-arm interferometers to suppress laser frequency noise. In this work we identify several laser frequency noise coupling channels that limit the performance of TDI. First, the on-board processing, which is used to decimate the sampling rate from tens of megahertz down to the telemetry rate of a few hertz, requires careful design. Appropriate anti-aliasing filters must be implemented to mitigate folding of laser noise power into the observation band. Furthermore, the flatness of these filters is important to limit the impact of the flexing-filtering effect. We demonstrate that this effect can be effectively reduced by using compensation filters on ground. Second, the post-processing delays applied in TDI are subject to interpolation and ranging errors. We study these laser and timing noise residuals analytically and perform simulations to validate the models numerically. Our findings have direct implications for the design of the LISA instrument as we identify the instrumental parameters that are essential for successful laser noise suppression and provide methods for designing appropriate filters for the on-board processing. In addition, we discuss a dedicated ranging processing pipeline that produces high-precision range estimates that are the input for TDI by combining the sideband and pseudo-random noise (PRN) ranges. We show in this thesis that biases in the PRN measurements limit the laser noise suppression performance. Therefore, we propose time-delay interferometric ranging (TDI-R) as a third ranging sensor to estimate bias-free ranges that can be used to calibrate the biases in the PRN measurements. We present a thorough statistical study of TDI-R to evaluate its performance. Therefore, we formulate the likelihood function of the interferometric data and use the Fisher information formalism to find a lower bound on the estimation variance of the inter-satellite ranges. We find that the ranging uncertainty is proportional to the inverse of the integration time and the ratio of secondary noise power, that limits the interferometric readout, to the laser noise power. To validate our findings we implement prototype TDI-R pipelines and perform numerical simulations. We show that we are able to formulate optimal estimators of the unbiased range that reach the CramĂ©r-Rao lower bound previously expressed analytically. The developed TDI-R pipeline will be integrated into the ranging processing pipeline to perform consistency checks and ensure well-calibrated inter-satellite ranges

    Design Of Polynomial-based Filters For Continuously Variable Sample Rate Conversion With Applications In Synthetic Instrumentati

    Get PDF
    In this work, the design and application of Polynomial-Based Filters (PBF) for continuously variable Sample Rate Conversion (SRC) is studied. The major contributions of this work are summarized as follows. First, an explicit formula for the Fourier Transform of both a symmetrical and nonsymmetrical PBF impulse response with variable basis function coefficients is derived. In the literature only one explicit formula is given, and that for a symmetrical even length filter with fixed basis function coefficients. The frequency domain optimization of PBFs via linear programming has been proposed in the literature, however, the algorithm was not detailed nor were explicit formulas derived. In this contribution, a minimax optimization procedure is derived for the frequency domain optimization of a PBF with time-domain constraints. Explicit formulas are given for direct input to a linear programming routine. Additionally, accompanying Matlab code implementing this optimization in terms of the derived formulas is given in the appendix. In the literature, it has been pointed out that the frequency response of the Continuous-Time (CT) filter decays as frequency goes to infinity. It has also been observed that when implemented in SRC, the CT filter is sampled resulting in CT frequency response aliasing. Thus, for example, the stopband sidelobes of the Discrete-Time (DT) implementation rise above the CT designed level. Building on these observations, it is shown how the rolloff rate of the frequency response of a PBF can be adjusted by adding continuous derivatives to the impulse response. This is of great advantage, especially when the PBF is used for decimation as the aliasing band attenuation can be made to increase with frequency. It is shown how this technique can be used to dramatically reduce the effect of alias build up in the passband. In addition, it is shown that as the number of continuous derivatives of the PBF increases the resulting DT implementation more closely matches the Continuous-Time (CT) design. When implemented for SRC, samples from a PBF impulse response are computed by evaluating the polynomials using a so-called fractional interval, ”. In the literature, the effect of quantizing ” on the frequency response of the PBF has been studied. Formulas have been derived to determine the number of bits required to keep frequency response distortion below prescribed bounds. Elsewhere, a formula has been given to compute the number of bits required to represent ” to obtain a given SRC accuracy for rational factor SRC. In this contribution, it is shown how these two apparently competing requirements are quite independent. In fact, it is shown that the wordlength required for SRC accuracy need only be kept in the ” generator which is a single accumulator. The output of the ” generator may then be truncated prior to polynomial evaluation. This results in significant computational savings, as polynomial evaluation can require several multiplications and additions. Under the heading of applications, a new Wideband Digital Downconverter (WDDC) for Synthetic Instruments (SI) is introduced. DDCs first tune to a signal\u27s center frequency using a numerically controlled oscillator and mixer, and then zoom-in to the bandwidth of interest using SRC. The SRC is required to produce continuously variable output sample rates from a fixed input sample rate over a large range. Current implementations accomplish this using a pre-filter, an arbitrary factor resampler, and integer decimation filters. In this contribution, the SRC of the WDDC is simplified reducing the computational requirements to a factor of three or more. In addition to this, it is shown how this system can be used to develop a novel computationally efficient FFT-based spectrum analyzer with continuously variable frequency spans. Finally, after giving the theoretical foundation, a real Field Programmable Gate Array (FPGA) implementation of a novel Arbitrary Waveform Generator (AWG) is presented. The new approach uses a fixed Digital-to-Analog Converter (DAC) sample clock in combination with an arbitrary factor interpolator. Waveforms created at any sample rate are interpolated to the fixed DAC sample rate in real-time. As a result, the additional lower performance analog hardware required in current approaches, namely, multiple reconstruction filters and/or additional sample clocks, is avoided. Measured results are given confirming the performance of the system predicted by the theoretical design and simulation

    Design and implementation of a downlink MC-CDMA receiver

    Get PDF
    Cette thĂšse prĂ©sente une Ă©tude d'un systĂšme complet de transmission en liaison descendante utilisant la technologie multi-porteuse avec l'accĂšs multiple par division de code (Multi-Carrier Code Division Multiple Access, MC-CDMA). L'Ă©tude inclut la synchronisation et l'estimation du canal pour un systĂšme MC-CDMA en liaison descendante ainsi que l'implĂ©mentation sur puce FPGA d'un rĂ©cepteur MC-CDMA en liaison descendante en bande de base. Le MC-CDMA est une combinaison de la technique de multiplexage par frĂ©quence orthogonale (Orthogonal Frequency Division Multiplexing, OFDM) et de l'accĂšs multiple par rĂ©partition de code (CDMA), et ce dans le but d'intĂ©grer les deux technologies. Le systĂšme MC-CDMA est conçu pour fonctionner Ă  l'intĂ©rieur de la contrainte d'une bande de frĂ©quence de 5 MHz pour les modĂšles de canaux intĂ©rieur/extĂ©rieur pĂ©destre et vĂ©hiculaire tel que dĂ©crit par le "Third Genaration Partnership Project" (3GPP). La composante OFDM du systĂšme MC-CDMA a Ă©tĂ© simulĂ©e en utilisant le logiciel MATLAB dans le but d'obtenir des paramĂštres de base. Des codes orthogonaux Ă  facteur d'Ă©talement variable (OVSF) de longueur 8 ont Ă©tĂ© choisis comme codes d'Ă©talement pour notre systĂšme MC-CDMA. Ceci permet de supporter des taux de transmission maximum jusquĂ  20.6 Mbps et 22.875 Mbps (donnĂ©es non codĂ©es, pleine charge de 8 utilisateurs) pour les canaux intĂ©rieur/extĂ©rieur pĂ©destre et vĂ©hiculaire, respectivement. Une Ă©tude analytique des expressions de taux d'erreur binaire pour le MC-CDMA dans un canal multivoies de Rayleigh a Ă©tĂ© rĂ©alisĂ©e dans le but d'Ă©valuer rapidement et de façon prĂ©cise les performances. Des techniques d'estimation de canal basĂ©es sur les dĂ©cisions antĂ©rieures ont Ă©tĂ© Ă©tudiĂ©es afin d'amĂ©liorer encore plus les performances de taux d'erreur binaire du systĂšme MC-CDMA en liaison descendante. L'estimateur de canal basĂ© sur les dĂ©cisions antĂ©rieures et utilisant le critĂšre de l'erreur quadratique minimale linĂ©aire avec une matrice' de corrĂ©lation du canal de taille 64 x 64 a Ă©tĂ© choisi comme Ă©tant un bon compromis entre la performance et la complexitĂ© pour une implementation sur puce FPGA. Une nouvelle sĂ©quence d'apprentissage a Ă©tĂ© conçue pour le rĂ©cepteur dans la configuration intĂ©rieur/extĂ©rieur pĂ©destre dans le but d'estimer de façon grossiĂšre le temps de synchronisation et le dĂ©calage frĂ©quentiel fractionnaire de la porteuse dans le domaine du temps. Les estimations fines du temps de synchronisation et du dĂ©calage frĂ©quentiel de la porteuse ont Ă©tĂ© effectuĂ©s dans le domaine des frĂ©quences Ă  l'aide de sous-porteuses pilotes. Un rĂ©cepteur en liaison descendante MC-CDMA complet pour le canal intĂ©rieur /extĂ©rieur pĂ©destre avec les synchronisations en temps et en frĂ©quence en boucle fermĂ©e a Ă©tĂ© simulĂ© avant de procĂ©der Ă  l'implĂ©mentation matĂ©rielle. Le rĂ©cepteur en liaison descendante en bande de base pour le canal intĂ©rieur/extĂ©rieur pĂ©destre a Ă©tĂ© implĂ©mentĂ© sur un systĂšme de dĂ©veloppement fabriquĂ© par la compagnie Nallatech et utilisant le circuit XtremeDSP de Xilinx. Un transmetteur compatible avec le systĂšme de rĂ©ception a Ă©galement Ă©tĂ© rĂ©alisĂ©. Des tests fonctionnels du rĂ©cepteur ont Ă©tĂ© effectuĂ©s dans un environnement sans fil statique de laboratoire. Un environnement de test plus dynamique, incluant la mobilitĂ© du transmetteur, du rĂ©cepteur ou des Ă©lĂ©ments dispersifs, aurait Ă©tĂ© souhaitable, mais n'a pu ĂȘtre rĂ©alisĂ© Ă©tant donnĂ© les difficultĂ©s logistiques inhĂ©rentes. Les taux d'erreur binaire mesurĂ©s avec diffĂ©rents nombres d'usagers actifs et diffĂ©rentes modulations sont proches des simulations sur ordinateurs pour un canal avec bruit blanc gaussien additif

    Biorthogonal partners and applications

    Get PDF
    Two digital filters H(z) and F(z) are said to be biorthogonal partners of each other if their cascade H(z)F(z) satisfies the Nyquist or zero-crossing property. Biorthogonal partners arise in many different contexts such as filterbank theory, exact and least squares digital interpolation, and multiresolution theory. They also play a central role in the theory of equalization, especially, fractionally spaced equalizers in digital communications. We first develop several theoretical properties of biorthogonal partners. We also develop conditions for the existence of biorthogonal partners and FIR biorthogonal pairs and establish the connections to the Riesz basis property. We then explain how these results play a role in many of the above-mentioned applications

    Causal Instrument Corrections for Short-Period and Broadband Seismometers

    Get PDF
    Of all the filters applied to recordings of seismic waves, which include source, path, and site effects, the one we know most precisely is the instrument filter. Therefore, it behooves seismologists to accurately remove the effect of the instrument from raw seismograms. Applying instrument corrections allows analysis of the seismogram in terms of physical units (e.g., displacement or particle velocity of the Earth’s surface) instead of the output of the instrument (e.g., digital counts). The instrument correction can be considered the most fundamental processing step in seismology since it relates the raw data to an observable quantity of interest to seismologists. Complicating matters is the fact that, in practice, the term “instrument correction” refers to more than simply the seismometer. The instrument correction compensates for the complete recording system including the seismometer, telemetry, digitizer, and any anti‐alias filters
    • 

    corecore