1,179 research outputs found

    Fraction-free algorithm for the computation of diagonal forms matrices over Ore domains using Gr{\"o}bner bases

    Full text link
    This paper is a sequel to "Computing diagonal form and Jacobson normal form of a matrix using Groebner bases", J. of Symb. Computation, 46 (5), 2011. We present a new fraction-free algorithm for the computation of a diagonal form of a matrix over a certain non-commutative Euclidean domain over a computable field with the help of Gr\"obner bases. This algorithm is formulated in a general constructive framework of non-commutative Ore localizations of GG-algebras (OLGAs). We split the computation of a normal form of a matrix into the diagonalization and the normalization processes. Both of them can be made fraction-free. For a matrix MM over an OLGA we provide a diagonalization algorithm to compute U,VU,V and DD with fraction-free entries such that UMV=DUMV=D holds and DD is diagonal. The fraction-free approach gives us more information on the system of linear functional equations and its solutions, than the classical setup of an operator algebra with rational functions coefficients. In particular, one can handle distributional solutions together with, say, meromorphic ones. We investigate Ore localizations of common operator algebras over K[x]K[x] and use them in the unimodularity analysis of transformation matrices U,VU,V. In turn, this allows to lift the isomorphism of modules over an OLGA Euclidean domain to a polynomial subring of it. We discuss the relation of this lifting with the solutions of the original system of equations. Moreover, we prove some new results concerning normal forms of matrices over non-simple domains. Our implementation in the computer algebra system {\sc Singular:Plural} follows the fraction-free strategy and shows impressive performance, compared with methods which directly use fractions. Since we experience moderate swell of coefficients and obtain simple transformation matrices, the method we propose is well suited for solving nontrivial practical problems.Comment: 25 pages, to appear in Journal of Symbolic Computatio

    On the computation of π\pi-flat outputs for differential-delay systems

    Full text link
    We introduce a new definition of π\pi-flatness for linear differential delay systems with time-varying coefficients. We characterize π\pi- and π\pi-0-flat outputs and provide an algorithm to efficiently compute such outputs. We present an academic example of motion planning to discuss the pertinence of the approach.Comment: Minor corrections to fit with the journal versio

    Denominator Bounds and Polynomial Solutions for Systems of q-Recurrences over K(t) for Constant K

    Full text link
    We consider systems A_\ell(t) y(q^\ell t) + ... + A_0(t) y(t) = b(t) of higher order q-recurrence equations with rational coefficients. We extend a method for finding a bound on the maximal power of t in the denominator of arbitrary rational solutions y(t) as well as a method for bounding the degree of polynomial solutions from the scalar case to the systems case. The approach is direct and does not rely on uncoupling or reduction to a first order system. Unlike in the scalar case this usually requires an initial transformation of the system.Comment: 8 page

    Computing diagonal form and Jacobson normal form of a matrix using Gr\"obner bases

    Get PDF
    In this paper we present two algorithms for the computation of a diagonal form of a matrix over non-commutative Euclidean domain over a field with the help of Gr\"obner bases. This can be viewed as the pre-processing for the computation of Jacobson normal form and also used for the computation of Smith normal form in the commutative case. We propose a general framework for handling, among other, operator algebras with rational coefficients. We employ special "polynomial" strategy in Ore localizations of non-commutative GG-algebras and show its merits. In particular, for a given matrix MM we provide an algorithm to compute U,VU,V and DD with fraction-free entries such that UMV=DUMV=D holds. The polynomial approach allows one to obtain more precise information, than the rational one e. g. about singularities of the system. Our implementation of polynomial strategy shows very impressive performance, compared with methods, which directly use fractions. In particular, we experience quite moderate swell of coefficients and obtain uncomplicated transformation matrices. This shows that this method is well suitable for solving nontrivial practical problems. We present an implementation of algorithms in SINGULAR:PLURAL and compare it with other available systems. We leave questions on the algorithmic complexity of this algorithm open, but we stress the practical applicability of the proposed method to a bigger class of non-commutative algebras

    Solving Shift Register Problems over Skew Polynomial Rings using Module Minimisation

    Get PDF
    For many algebraic codes the main part of decoding can be reduced to a shift register synthesis problem. In this paper we present an approach for solving generalised shift register problems over skew polynomial rings which occur in error and erasure decoding of \ell-Interleaved Gabidulin codes. The algorithm is based on module minimisation and has time complexity O(μ2)O(\ell \mu^2) where μ\mu measures the size of the input problem.Comment: 10 pages, submitted to WCC 201
    corecore