501 research outputs found

    Smart Material Wing Morphing for Unmanned Aerial Vehicles.

    Full text link
    Morphing, or geometric adaptation to off-design conditions, has been considered in aircraft design since the Wright Brothers’ first powered flight. Decades later, smooth, bio-mimetic shape variation for control over aerodynamic forces still remains elusive. Unmanned Aerial Vehicles are prime targets for morphing implementation as they must adapt to large changes in flight conditions associated with locally varying wind or large changes in mass associated with payload delivery. The Spanwise Morphing Trailing Edge (SMTE) concept is developed to locally vary the trailing edge camber of a wing or control surface, functioning as a modular replacement for conventional ailerons without altering the wing’s spar box. The SMTE design was realized utilizing alternating active sections of Macro Fiber Composites (MFCs) driving internal elastomeric compliant mechanisms and passive sections of anisotropic, elastomeric skin with tailorable stiffness, produced by additive manufacturing. Experimental investigations of the modular design via a new scaling methodology for reduced-span test articles revealed that increased use of more MFCs within the active section did not increase aerodynamic performance due to asymmetric voltage constraints. The comparative mass and aerodynamic gains for the SMTE concept are evaluated for a representative finite wing as compared with a conventional, articulated flap wing. Informed by a simplistic system model and measured control derivatives, experimental investigations identified a reduction in the adaptive drag penalty up to 20% at off-design conditions. To investigate the potential for augmented aeroelastic performance and actuation range, a hybrid multiple-smart material morphing concept, the Synergistic Smart Morphing Aileron (SSMA), is introduced. The SSMA leverages the properties of two different smart material actuators to achieve performance exceeding that of the constituent materials. Utilizing the relatively higher work density and phase transformation of Shape-Memory Alloys combined with the larger bandwidth and conformal bending of MFCs, the resultant design is demonstrated to achieve the desired goals while providing additional control authority at stall and for unsteady conditions through synergistic use of reflex actuation. These advances highlight and motivate new morphing structures for the growing field of UAVs in which adaptation involves advanced compliance tailoring of complex geometry with synergistic actuation of embedded, smart materials.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111533/1/alexmp_1.pd

    Simultaneous use of shape memory alloys and permanent magnets in multistable smart structures for morphing aircraft applications

    Get PDF
    This Thesis considers the simultaneous use of shape memory alloys and permanent magnets for achieving multistable smart structures aiming towards morphing applications. Motivation for this approach lies in the poor energetic efficiency of shape memory alloys, which can void system-level benefits provided by morphing technologies. Multistability can therefore be adopted to prevent continuous operation of shape memory alloy actuators. Objectives of the study involve the combination of shape memory alloys and permanent magnets in new geometrical arrangements to achieve multistable behavior; the development of a numerical modeling procedure that is able to simulate the multi-physics nature of the studied systems; and the proposal of a geometric arrangement for morphing applications that is based on a repeating pattern of unit cells which incorporate the combined use of shape memory alloy wires and permanent magnets for multistability. The proposed modeling strategy considers a geometrically nonlinear beam finite element; a thermo-mechanical constitutive behavior for shapememoryalloys;theinteractionofcuboidalpermanentmagnetswitharbitraryorienta- tions; and node-to-element contact. Experiments are performed with three distinct systems, including a proof-of-concept beam, a three cell morphing beam metastructure, and a morphing airfoil prototype with six unit cells. Results show that the combination of shape memory alloys and permanent magnets indeed allows for multistable behavior. Furthermore, the dis- tributedactuationcapabilitiesofthe morphingmetastructureallowforsmoothandlocalized geometrical shape changes.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoTese (Doutorado)Esta Tese considera o uso simultâneo de ligas com memória de forma e ímãs permanentes para a obtenção de estruturas inteligentes multiestáveis, com vistas a sua aplicação em aeronaves de geometria variável. A motivação para tal abordagem reside na baixa eficiência energética associada às ligas com memória de forma, a qual pode eliminar benefícios oriundos de tecnologias relacionadas a geometria variável. Multiestabilidade pode, desta forma, ser adotada para prevenir operação contínua de atuadores baseados em ligas com memória de forma. Objetivos do estudo envolvem a combinação de ligas com memória de forma e ímãs permanentes em novos arranjos geométricos para a obtenção de comportamento multiestável; o desenvolvimento de um procedimento de modelagem numérica que pode simular a natureza multifísica dos sistemas estudados; e a proposição de um arranjo geométrico para aplicações que envolvem geometria variável, o qual é baseado num padrão repetitivo de células unitárias que incorporam o uso combinado de ligas com memória de forma e ímãs permanentes para mul- tiestabilidade. A estratégia de modelagem proposta considera um elemento finito de viga com não-linearidades geométricas; um modelo constitutivo termomecânico para ligas com memória de forma; a interação entre ímãs permanentes cúbicos com orientação arbitrária; e contato entre elemento-e-nó no contexto de elementos finitos. Experimentos são realizados com três sistemas distintos, incluindo uma viga para prova de conceito, uma metaestrutura do tipo viga com geometria variável composta por três células unitárias, e um protótipo de aerofólio com geometria variável composto por seis células unitárias. Resultados mostram que a combinação de ligas com memória de forma e ímãs permanentes permite a obtenção de comportamento multiestável. Além disso, a característica de atuação distribuída das metaestruturas com geometria variável permite alterações de forma suaves e localizadas

    Model-based Design Framework for Shape Memory Alloy Wire Actuation Devices.

    Full text link
    While Shape Memory Alloys (SMAs) have exceptional actuation characteristics such as high energy density, silent operation, flexible packaging, etc., they have not found widespread use in commercial applications because of the significant learning curve required of engineers before they are capable of designing actuation devices using this unique material. An SMA actuation device design framework consisting of grammar, design methods, and design process enables engineers of different backgrounds to make efficient and appropriate design decisions in different stages of the design process. A reference SMA actuation device structure built on a generalized actuation device hierarchical structure using the actuation device grammar works as a reference structure to identify and populate device design options, and to model and analyze the device actuation performance as well as to enlighten non-expert engineers about the essential elements of SMA actuation devices. Design methods consisting of modular modeling, model aggregation and performance prediction, and visualization approaches support design decisions to serve diverse stakeholders of actuation device design by exposing the effects of individual device elements not only for SMA actuation devices, but also for a wide range of actuation devices. A multi-stage design process is formalized to help engineers create a detailed design including a three-step decoupled equilibrium design procedure which prevents potential iteration by decoupling the force and deflection of actuation output behavior, and hides the complexity of material and SMA architectural models from engineers while still exposing the impact of design parameters. The design framework makes SMA design knowledge more accessible to engineers with different levels of expertise and roles in device development by systematically organizing and presenting the device grammar, design methods, and design process. A design tool software platform based on the framework enables the creation of computer-aided design tools to support a variety of design tasks, which were demonstrated in two use case examples. By having the SMA actuation device design framework, the acceptance of the SMA actuation technology into both research and commercial applications can be increased to utilize promising SMA actuation benefits, and the device development cycle leading to these applications can be streamlined.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120684/1/wonhekim_1.pd

    Structural analysis of a variable-span wing-box

    Get PDF
    This dissertation describes the work done to analyse the wing-box of a variable-span wing. Based on previous work in the CHANGE project the main objective of this study is the experi-mental analysis of the wing-box structure’s prototype build at Universidade da Beira Interior, one of the CHANGE project partners. Surrounding the preliminary design of this project, a nu-merical model written, concerning a parallel work, was modified and used to analyse the mass and displacement variations according to the moving fraction and semi-span of the morphing wing-box. It was first dimensioned the jig to statically validate this structural model that con-cerns the following work. Through the use of Computer Aided Design tools and numerical cal-culation, it was designed and built an experimental setup. Based on computational structural analysis tools, the numerical model allowed the parametric study of the preliminary wing-box design comprising the mass and displacement changes in accordance of the two following pa-rameters: moving fraction and semi-span. In order to complement this study, various configu-rations of the preliminary wing-box were analysed such as the reduction of the composite sand-wich skin’s thickness. With the help of programming tools two polynomial functions were cal-culated from the respective variations previous described. Finally, experimental tests were performed on the prototype of the preliminary wing design. The numerical model was validated and the values are in good agreementEsta dissertação de mestrado descreve o trabalho realizado para analisar a estrutura da caixa de torção de uma asa de envergadura variável. Com base no trabalho realizado anterior-mente no projeto CHANGE o principal objetivo desta dissertação é a validação do modelo nu-mérico, feito por Pedro Santos, da caixa de torção envolvente no desenho preliminar para este projeto. Primeiramente foi dimensionado o estaleiro para validar estaticamente este modelo estrutural em que se constituiu o seguinte trabalho. Através do uso de ferramentas computaci-onais de desenho (CAD) e cálculo numérico, foi projetada e construída a montagem experimen-tal. Com base em ferramentas de análise estrutural computacional, o modelo numérico permi-tiu o estudo paramétrico, um dos objetivos deste trabalho. De modo a complementar este estudo, foram analisadas várias configurações da asa preliminar para compreender a variação do peso da estrutura e da flexão de acordo com a fração da envergadura móvel. Com a ajuda de ferramentas de programação obtiveram-se dois polinómios calculados a partir das respetivas variações anteriormente descritas. Finalmente foram feitos testes experimentais no protótipo do desenho da asa preliminar.
    corecore