129 research outputs found

    Dual-Quaternion Julia Fractals

    Full text link
    Fractals offer the ability to generate fascinating geometric shapes with all sorts of unique characteristics (for instance, fractal geometry provides a basis for modelling infinite detail found in nature). While fractals are non-euclidean mathematical objects which possess an assortment of properties (e.g., attractivity and symmetry), they are also able to be scaled down, rotated, skewed and replicated in embedded contexts. Hence, many different types of fractals have come into limelight since their origin discovery. One particularly popular method for generating fractal geometry is using Julia sets. Julia sets provide a straightforward and innovative method for generating fractal geometry using an iterative computational modelling algorithm. In this paper, we present a method that combines Julia sets with dual-quaternion algebra. Dual-quaternions are an alluring principal with a whole range interesting mathematical possibilities. Extending fractal Julia sets to encompass dual-quaternions algebra provides us with a novel visualize solution. We explain the method of fractals using the dual-quaternions in combination with Julia sets. Our prototype implementation demonstrate an efficient methods for rendering fractal geometry using dual-quaternion Julia sets based upon an uncomplicated ray tracing algorithm. We show a number of different experimental isosurface examples to demonstrate the viability of our approach

    A Survey on Dual-Quaternions

    Full text link
    Over the past few years, the applications of dual-quaternions have not only developed in many different directions but has also evolved in exciting ways in several areas. As dual-quaternions offer an efficient and compact symbolic form with unique mathematical properties. While dual-quaternions are now common place in many aspects of research and implementation, such as, robotics and engineering through to computer graphics and animation, there are still a large number of avenues for exploration with huge potential benefits. This article is the first to provide a comprehensive review of the dual-quaternion landscape. In this survey, we present a review of dual-quaternion techniques and applications developed over the years while providing insights into current and future directions. The article starts with the definition of dual-quaternions, their mathematical formulation, while explaining key aspects of importance (e.g., compression and ambiguities). The literature review in this article is divided into categories to help manage and visualize the application of dual-quaternions for solving specific problems. A timeline illustrating key methods is presented, explaining how dual-quaternion approaches have progressed over the years. The most popular dual-quaternion methods are discussed with regard to their impact in the literature, performance, computational cost and their real-world results (compared to associated models). Finally, we indicate the limitations of dual-quaternion methodologies and propose future research directions.Comment: arXiv admin note: text overlap with arXiv:2303.1339

    Glimpses of the Octonions and Quaternions History and Todays Applications in Quantum Physics

    Full text link
    Before we dive into the accessibility stream of nowadays indicatory applications of octonions to computer and other sciences and to quantum physics let us focus for a while on the crucially relevant events for todays revival on interest to nonassociativity. Our reflections keep wandering back to the BrahmaguptaBrahmagupta FibonaccFibonacc two square identity and then via the EulerEuler four square identity up to the DegenDegen GgravesGgraves CayleyCayley eight square identity. These glimpses of history incline and invite us to retell the story on how about one month after quaternions have been carved on the BroughamianBroughamian bridge octonions were discovered by JohnJohn ThomasThomas GgravesGgraves, jurist and mathematician, a friend of WilliamWilliam RowanRowan HamiltonHamilton. As for today we just mention en passant quaternionic and octonionic quantum mechanics, generalization of CauchyCauchy RiemannRiemann equations for octonions and triality principle and G2G_2 group in spinor language in a descriptive way in order not to daunt non specialists. Relation to finite geometries is recalled and the links to the 7stones of seven sphere, seven imaginary octonions units in out of the PlatoPlato cave reality applications are appointed . This way we are welcomed back to primary ideas of HeisenbergHeisenberg, WheelerWheeler and other distinguished fathers of quantum mechanics and quantum gravity foundations.Comment: 26 pages, 7 figure

    Fractals

    Get PDF
    Volume 3, Issue 1, January 201

    Instantaneously trained neural networks with complex and quaternion inputs

    Get PDF
    Neural network architectures such as backpropagation networks, perceptrons or generalized Hopfield networks can handle complex inputs but they require a large amount of time and resources for the training process. This thesis investigates instantaneously trained feedforward neural networks that can handle complex and quaternion inputs. The performance of the basic algorithm has been analyzed and shown how it provides a plausible model of human perception and understanding of images. The motivation for studying quaternion inputs is their use in representing spatial rotations that find applications in computer graphics, robotics, global navigation, computer vision and the spatial orientation of instruments. The problem of efficient mapping of data in quaternion neural networks is examined. Some problems that need to be addressed before quaternion neural networks find applications are identified
    corecore