716 research outputs found

    Fractal based speech recognition and synthesis

    Get PDF
    Transmitting a linguistic message is most often the primary purpose of speech com­munication and the recognition of this message by machine that would be most useful. This research consists of two major parts. The first part presents a novel and promis­ing approach for estimating the degree of recognition of speech phonemes and makes use of a new set of features based fractals. The main methods of computing the frac­tal dimension of speech signals are reviewed and a new speaker-independent speech recognition system developed at De Montfort University is described in detail. Fi­nally, a Least Square Method as well as a novel Neural Network algorithm is employed to derive the recognition performance of the speech data. The second part of this work studies the synthesis of speech words, which is based mainly on the fractal dimension to create natural sounding speech. The work shows that by careful use of the fractal dimension together with the phase of the speech signal to ensure consistent intonation contours, natural-sounding speech synthesis is achievable with word level speech. In order to extend the flexibility of this framework, we focused on the filtering and the compression of the phase to maintain and produce natural sounding speech. A ‘naturalness level’ is achieved as a result of the fractal characteristic used in the synthesis process. Finally, a novel speech synthesis system based on fractals developed at De Montfort University is discussed. Throughout our research simulation experiments were performed on continuous speech data available from the Texas Instrument Massachusetts institute of technology ( TIMIT) database, which is designed to provide the speech research community with a standarised corpus for the acquisition of acoustic-phonetic knowledge and for the development and evaluation of automatic speech recognition system

    Covert voice over internet protocol communications with packet loss based on fractal interpolation

    Get PDF
    The last few years have witnessed an explosive growth in the research of information hiding in multimedia objects, but few studies have taken into account packet loss in multimedia networks. As one of the most popular real-time services in the Internet, Voice over Internet Protocol (VoIP) contributes to a large part of network traffic for its advantages of real time, high flow, and low cost. So packet loss is inevitable in multimedia networks and affects the performance of VoIP communications. In this study, a fractal-based VoIP steganographic approach was proposed to realise covert VoIP communications in the presence of packet loss. In the proposed scheme, secret data to be hidden were divided into blocks after being encrypted with the block cipher, and each block of the secret data was then embedded into VoIP streaming packets. The VoIP packets went through a packet loss system based on Gilbert model which simulates a real network situation. And a prediction model based on fractal interpolation was built to decide whether a VoIP packet was suitable for data hiding. The experimental results indicated that the speech quality degradation increased with the escalating packet-loss level. The average variance of speech quality metrics (PESQ score) between the "no-embedding" speech samples and the “with-embedding” stego-speech samples was about 0.717, and the variances narrowed with the increasing packet-loss level. Both the average PESQ scores and the SNR values of stego-speech samples and the data retrieving rates had almost the same varying trends when the packet-loss level increased, indicating that the success rate of the fractal prediction model played an important role in the performance of covert VoIP communications

    Objective dysphonia quantification in vocal fold paralysis: comparing nonlinear with classical measures

    Get PDF
    Clinical acoustic voice recording analysis is usually performed using classical perturbation measures including jitter, shimmer and noise-to-harmonic ratios. However, restrictive mathematical limitations of these measures prevent analysis for severely dysphonic voices. Previous studies of alternative nonlinear random measures addressed wide varieties of vocal pathologies. Here, we analyze a single vocal pathology cohort, testing the performance of these alternative measures alongside classical measures.

We present voice analysis pre- and post-operatively in unilateral vocal fold paralysis (UVFP) patients and healthy controls, patients undergoing standard medialisation thyroplasty surgery, using jitter, shimmer and noise-to-harmonic ratio (NHR), and nonlinear recurrence period density entropy (RPDE), detrended fluctuation analysis (DFA) and correlation dimension. Systematizing the preparative editing of the recordings, we found that the novel measures were more stable and hence reliable, than the classical measures, on healthy controls.

RPDE and jitter are sensitive to improvements pre- to post-operation. Shimmer, NHR and DFA showed no significant change (p > 0.05). All measures detect statistically significant and clinically important differences between controls and patients, both treated and untreated (p < 0.001, AUC > 0.7). Pre- to post-operation, GRBAS ratings show statistically significant and clinically important improvement in overall dysphonia grade (G) (AUC = 0.946, p < 0.001).

Re-calculating AUCs from other study data, we compare these results in terms of clinical importance. We conclude that, when preparative editing is systematized, nonlinear random measures may be useful UVFP treatment effectiveness monitoring tools, and there may be applications for other forms of dysphonia.
&#xa

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on seventeen research projects.U.S. Navy - Office of Naval Research Grant N00014-91-J-1628Vertical Arrays for the Heard Island Experiment Award No. SC 48548Charles S. Draper Laboratories, Inc. Contract DL-H-418472Defense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-89-J-1489Rockwell Corporation Doctoral FellowshipMIT - Woods Hole Oceanographic Institution Joint ProgramDefense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-90-J-1109Lockheed Sanders, Inc./U.S. Navy - Office of Naval Research Contract N00014-91-C-0125U.S. Air Force - Office of Scientific Research Grant AFOSR-91-0034AT&T Laboratories Doctoral ProgramU.S. Navy - Office of Naval Research Grant N00014-91-J-1628General Electric Foundation Graduate Fellowship in Electrical EngineeringNational Science Foundation Grant MIP 87-14969National Science Foundation Graduate FellowshipCanada Natural Sciences and Engineering Research CouncilLockheed Sanders, Inc

    Testing the assumptions of linear prediction analysis in normal vowels

    Get PDF
    This paper develops an improved surrogate data test to show experimental evidence, for all the simple vowels of US English, for both male and female speakers, that Gaussian linear prediction analysis, a ubiquitous technique in current speech technologies, cannot be used to extract all the dynamical structure of real speech time series. The test provides robust evidence undermining the validity of these linear techniques, supporting the assumptions of either dynamical nonlinearity and/or non-Gaussianity common to more recent, complex, efforts at dynamical modelling speech time series. However, an additional finding is that the classical assumptions cannot be ruled out entirely, and plausible evidence is given to explain the success of the linear Gaussian theory as a weak approximation to the true, nonlinear/non-Gaussian dynamics. This supports the use of appropriate hybrid linear/nonlinear/non-Gaussian modelling. With a calibrated calculation of statistic and particular choice of experimental protocol, some of the known systematic problems of the method of surrogate data testing are circumvented to obtain results to support the conclusions to a high level of significance

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on twenty-two research projects and a list of publications.Sanders, a Lockheed-Martin Corporation Contract BZ4962U.S. Army Research Laboratory Contract DAAL01-96-2-0001U.S. Navy - Office of Naval Research Grant N00014-93-1-0686National Science Foundation Grant MIP 95-02885U.S. Navy - Office of Naval Research Grant N00014-96-1-0930National Defense Science and Engineering FellowshipU.S. Air Force - Office of Scientific Research Grant F49620-96-1-0072U.S. Navy - Office of Naval Research Grant N00014-95-1-0362National Science Foundation Graduate Research FellowshipAT&T Bell Laboratories Graduate Research FellowshipU.S. Army Research Laboratory Contract DAAL01-96-2-0002National Science Foundation Graduate FellowshipU.S. Army Research Laboratory/Advanced Sensors Federated Lab Program Contract DAAL01-96-2-000

    Adaptive speech compression based on AMBTC

    Get PDF
    Most of the AMBTC-based RDH (absolute instantaneous block truncation) schemes Cannot be decrypted because AMBTC, which is unknown to most device. Also, some of the RDH methods based on AMBTC. But the load capacity obtained is low. For this purpose, in this work, a scalable RDH scheme based on AMBTC was introduced from the AMBTC zip code. In contrast to the decoder-based AMBTC-based RDH methods that are only able to achieve a constant payload for adjust the audio. Due to its advantages, sound pressure has attracted a great deal of attention in the last 20 years. The main developments concern transmission requirements and storage capacity. The need for high-quality audio data has been increased due to sudden improvements in computer manufacturers and technologies. Therefore, the developments include speech compression technologies, in which the two compression classes are lossless. This paper aims to review techniques for specification compression methods using AMBTC (a momentary absolute block truncation notation based ) method, and to summarize their importance and uses

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on twenty research projects and a list of publications.Lockheed Sanders, Inc. Contract BZ4962U.S. Army Research Laboratory Grant QK-8819U.S. Navy - Office of Naval Research Grant N00014-93-1-0686National Science Foundation Grant MIP 95-02885U.S. Navy - Office of Naval Research Grant N00014-95-1-0834U.S. Navy - Office of Naval Research Grant N00014-96-1-0930U.S. Navy - Office of Naval Research Grant N00014-95-1-0362National Defense Science and Engineering FellowshipU.S. Air Force - Office of Scientific Research Grant F49620-96-1-0072National Science Foundation Graduate Research Fellowship Grant MIP 95-02885Lockheed Sanders, Inc. Grant N00014-93-1-0686National Science Foundation Graduate FellowshipU.S. Army Research Laboratory/ARL Advanced Sensors Federated Lab Program Contract DAAL01-96-2-000

    Visual Data Compression for Multimedia Applications

    Get PDF
    The compression of visual information in the framework of multimedia applications is discussed. To this end, major approaches to compress still as well as moving pictures are reviewed. The most important objective in any compression algorithm is that of compression efficiency. High-compression coding of still pictures can be split into three categories: waveform, second-generation, and fractal coding techniques. Each coding approach introduces a different artifact at the target bit rates. The primary objective of most ongoing research in this field is to mask these artifacts as much as possible to the human visual system. Video-compression techniques have to deal with data enriched by one more component, namely, the temporal coordinate. Either compression techniques developed for still images can be generalized for three-dimensional signals (space and time) or a hybrid approach can be defined based on motion compensation. The video compression techniques can then be classified into the following four classes: waveform, object-based, model-based, and fractal coding techniques. This paper provides the reader with a tutorial on major visual data-compression techniques and a list of references for further information as the details of each metho

    A Subband-Based SVM Front-End for Robust ASR

    Full text link
    This work proposes a novel support vector machine (SVM) based robust automatic speech recognition (ASR) front-end that operates on an ensemble of the subband components of high-dimensional acoustic waveforms. The key issues of selecting the appropriate SVM kernels for classification in frequency subbands and the combination of individual subband classifiers using ensemble methods are addressed. The proposed front-end is compared with state-of-the-art ASR front-ends in terms of robustness to additive noise and linear filtering. Experiments performed on the TIMIT phoneme classification task demonstrate the benefits of the proposed subband based SVM front-end: it outperforms the standard cepstral front-end in the presence of noise and linear filtering for signal-to-noise ratio (SNR) below 12-dB. A combination of the proposed front-end with a conventional front-end such as MFCC yields further improvements over the individual front ends across the full range of noise levels
    • 

    corecore