14,930 research outputs found

    A survey of parallel algorithms for fractal image compression

    Get PDF
    This paper presents a short survey of the key research work that has been undertaken in the application of parallel algorithms for Fractal image compression. The interest in fractal image compression techniques stems from their ability to achieve high compression ratios whilst maintaining a very high quality in the reconstructed image. The main drawback of this compression method is the very high computational cost that is associated with the encoding phase. Consequently, there has been significant interest in exploiting parallel computing architectures in order to speed up this phase, whilst still maintaining the advantageous features of the approach. This paper presents a brief introduction to fractal image compression, including the iterated function system theory upon which it is based, and then reviews the different techniques that have been, and can be, applied in order to parallelize the compression algorithm

    Fractal image compression

    Get PDF
    Fractals are geometric or data structures which do not simplify under magnification. Fractal Image Compression is a technique which associates a fractal to an image. On the one hand, the fractal can be described in terms of a few succinct rules, while on the other, the fractal contains much or all of the image information. Since the rules are described with less bits of data than the image, compression results. Data compression with fractals is an approach to reach high compression ratios for large data streams related to images. The high compression ratios are attained at a cost of large amounts of computation. Both lossless and lossy modes are supported by the technique. The technique is stable in that small errors in codes lead to small errors in image data. Applications to the NASA mission are discussed

    A comparison of the fractal and JPEG algorithms

    Get PDF
    A proprietary fractal image compression algorithm and the Joint Photographic Experts Group (JPEG) industry standard algorithm for image compression are compared. In every case, the JPEG algorithm was superior to the fractal method at a given compression ratio according to a root mean square criterion and a peak signal to noise criterion

    BASED ON RANGE AND DOMAIN FRACTAL IMAGE COMPRESSION OF SATELLITE IMAGERIES IMPROVED ALGORITHM FOR RESEARCH

    Get PDF
    Fractal coding is a novel method to compress images, which was proposed by Barnsley, and implemented by Jacquin. It offers many advantages. Fractal image coding has the advantage of higher compression ratio, but is a lossy compression scheme. The encoding procedure consists of dividing the image into range blocks and domain blocks and then it takes a range block and matches it with the domain block. The image is encoded by partitioning the domain block and using affine transformation to achieve fractal compression. The image is reconstructed using iterative functions and inverse transforms. However, the encoding time of traditional fractal compression technique is too long to achieve real-time image compression, so it cannot be widely used. Based on the theory of fractal image compression; this paper raised an improved algorithm form the aspect of image segmentation. In the present work the fractal coding techniques are applied for the compression of satellite imageries. The Peak Signal to Noise Ratio (PSNR) values are determined for images namely Satellite Rural image and Satellite Urban image. The Matlab simulation results for the reconstructed image shows that PSNR values achievable for Satellite Rural image ~33 and for Satellite urban image ~42

    Fractal image compression: A resolution independent representation for imagery

    Get PDF
    A deterministic fractal is an image which has low information content and no inherent scale. Because of their low information content, deterministic fractals can be described with small data sets. They can be displayed at high resolution since they are not bound by an inherent scale. A remarkable consequence follows. Fractal images can be encoded at very high compression ratios. This fern, for example is encoded in less than 50 bytes and yet can be displayed at resolutions with increasing levels of detail appearing. The Fractal Transform was discovered in 1988 by Michael F. Barnsley. It is the basis for a new image compression scheme which was initially developed by myself and Michael Barnsley at Iterated Systems. The Fractal Transform effectively solves the problem of finding a fractal which approximates a digital 'real world image'

    Fractal Image Compression

    Get PDF
    Tato práce má za cíl definovat pojem fraktál, vysvětlit pojem komprese obrazu a popsat metodu fraktální komprese obrazu, kterou poté prakticky naprogramovat pro použití na reálných obrazových datech.The aim of this bachelor's thesis is to define fractal, explain an image compression methods and describe fractal image compression. Then make an application of fractal image compression in a form of computer program, which can be used for real digital images.

    Fractal Image Compression Using Modified Operator (IFS)

    Get PDF
    Image data Compression based on fractal theory is fundamentally dierent from conventional compression methods, its idea is to generate a contraction operator whose fixed point approximates the original image in a complete metric space of images. The specication of such operator can be stored as the fractal code for the original image. The contraction mapping principle implies that the iteration of the stored operator starting from arbitrary initial image will recover its xed point which is an approximation for the original image. This Contraction mapping is usually constructed using the partitioned IFS(PIFS) technique which relies on the assertion that parts of the image resemble other parts of the same image. It then, nds the fractal code for each part by searching for another larger similar part. This high costly search makes fractal image compression dicult to be implemented in practice, even it has the advantages of a high compression ratio, a low loss ratio, and the resolution independence of the compression rate. In this paper, we investigate fractal image compression(FIC) using Iterated Function Systems(IFS). After reviewing the standard scheme, we state a mathematical formulation for the practical aspect. We then propose a modied IFS that relies on the fact  that, there are very smooth parts in certain images. From the view point of mathematics, we present the modied operator, proving its properties that make it not only a fractal operator but also more eective than the standard one. The experimental results are presented and the performance of the proposed algorithm is discussed

    A Review on Block Matching Motion Estimation and Automata Theory based Approaches for Fractal Coding

    Get PDF
    Fractal compression is the lossy compression technique in the field of gray/color image and video compression. It gives high compression ratio, better image quality with fast decoding time but improvement in encoding time is a challenge. This review paper/article presents the analysis of most significant existing approaches in the field of fractal based gray/color images and video compression, different block matching motion estimation approaches for finding out the motion vectors in a frame based on inter-frame coding and intra-frame coding i.e. individual frame coding and automata theory based coding approaches to represent an image/sequence of images. Though different review papers exist related to fractal coding, this paper is different in many sense. One can develop the new shape pattern for motion estimation and modify the existing block matching motion estimation with automata coding to explore the fractal compression technique with specific focus on reducing the encoding time and achieving better image/video reconstruction quality. This paper is useful for the beginners in the domain of video compression
    corecore