2,128 research outputs found

    Fast Search Approaches for Fractal Image Coding: Review of Contemporary Literature

    Get PDF
    Fractal Image Compression FIC as a model was conceptualized in the 1989 In furtherance there are numerous models that has been developed in the process Existence of fractals were initially observed and depicted in the Iterated Function System IFS and the IFS solutions were used for encoding images The process of IFS pertaining to any image constitutes much lesser space for recording than the actual image which has led to the development of representation the image using IFS form and how the image compression systems has taken shape It is very important that the time consumed for encoding has to be addressed for achieving optimal compression conditions and predominantly the inputs that are shared in the solutions proposed in the study depict the fact that despite of certain developments that has taken place still there are potential chances of scope for improvement From the review of exhaustive range of models that are depicted in the model it is evident that over period of time numerous advancements have taken place in the FCI model and is adapted at image compression in varied levels This study focus on the existing range of literature on FCI and the insights of various models has been depicted in this stud

    Analysing and processing medical images with increased performance using fractal geometry

    Get PDF
    The research relied on the application of a series of steps to analyze medical images, and to basically achieve this goal, a set of techniques were made from both fractal engineering and tissue analysis by improving the studied image and then analyzing the studied image texture in the fractal dimension and propose a hybrid method for segmenting images of complex situations and structures based on the geometric patterns that are repeated and represented by the fractal filter (Hurst), which is one of the modern techniques used in the field of digital image processing. Using fractal methods, that is, a specific application through real fractal structures of medical images and measuring their fractal dimensions and in capturing the exact features based on the scale in dimensional fractions, where the accuracy rate reached )98%( in diagnosing pathological conditions with an error rate close to zero. Also, the coefficients of multiple fractals were calculated (α) ,with a threshold factor of (4.5), the texture is also classified based on the fractal algorithm and Gray-Level Co-Occurrence Matrices (GLCM) and according to the experimental results performed on the medical images, the classification method provides a classification rate of 95%. To increase the accuracy, the lacunarity was calculated in the healthy medical images by applying fractal theorem filters where the gap ratio was close to (1) in the lacunarity size. The results also showed that the decrease in the contrast of the image with the continuation of the smoothing process or the decrease in the intensity levels of the image causes a significant decrease in the contrast of the image, especially in the areas of the edges

    A reduced domain pool based on DCT for a fast fractal image encoding

    Get PDF
    Fractal image compression is time consuming due to the search of the matching between range and domain blocks. In order to improve this compression method, we propose firstly, in this paper, a fast method for reducing the computational complexity of fractal encoding by reducing the size of the domain pool. This reduction is based on the lowest horizontal and vertical DCT coefficients of domain blocks. The experimental results on the test images show that the proposed method reduce the time computation and reach a high speedup factor without decreasing the image quality. Secondly, we combine our method to the AP2D approach which uses two domain pools in two steps of encoding. A more reduction of encoding time is obtained without decreasing the image quality

    Significant medical image compression techniques: a review

    Get PDF
    Telemedicine applications allow the patient and doctor to communicate with each other through network services. Several medical image compression techniques have been suggested by researchers in the past years. This review paper offers a comparison of the algorithms and the performance by analysing three factors that influence the choice of compression algorithm, which are image quality, compression ratio, and compression speed. The results of previous research have shown that there is a need for effective algorithms for medical imaging without data loss, which is why the lossless compression process is used to compress medical records. Lossless compression, however, has minimal compression ratio efficiency. The way to get the optimum compression ratio is by segmentation of the image into region of interest (ROI) and non-ROI zones, where the power and time needed can be minimised due to the smaller scale. Recently, several researchers have been attempting to create hybrid compression algorithms by integrating different compression techniques to increase the efficiency of compression algorithms

    Reversible Image Watermarking Using Modified Quadratic Difference Expansion and Hybrid Optimization Technique

    Get PDF
    With increasing copyright violation cases, watermarking of digital images is a very popular solution for securing online media content. Since some sensitive applications require image recovery after watermark extraction, reversible watermarking is widely preferred. This article introduces a Modified Quadratic Difference Expansion (MQDE) and fractal encryption-based reversible watermarking for securing the copyrights of images. First, fractal encryption is applied to watermarks using Tromino's L-shaped theorem to improve security. In addition, Cuckoo Search-Grey Wolf Optimization (CSGWO) is enforced on the cover image to optimize block allocation for inserting an encrypted watermark such that it greatly increases its invisibility. While the developed MQDE technique helps to improve coverage and visual quality, the novel data-driven distortion control unit ensures optimal performance. The suggested approach provides the highest level of protection when retrieving the secret image and original cover image without losing the essential information, apart from improving transparency and capacity without much tradeoff. The simulation results of this approach are superior to existing methods in terms of embedding capacity. With an average PSNR of 67 dB, the method shows good imperceptibility in comparison to other schemes

    A New Method For Digital Watermarking Based on Combination of DCT and PCA

    Full text link
    In the digital watermarking with DCT method,the watermark is located within a range of DCT coefficients of the cover image. In this paper to use the low-frequency band, a new method is proposed by using a combination of the DCT and PCA transform. The proposed method is compared to other DCT methods, our method is robust and keeps the quality of cover image, also increases capacity of the watermarking.Comment: Telecommunications Forum Telfor (TELFOR), 2014 22n

    On the development of evolutionary artificial artists

    Get PDF
    The creation and the evaluation of aesthetic artifacts are tasks related to design, music and art, which are highly interesting from the computational point of view. Nowadays, Artificial Intelligence systems face the challenge of performing tasks that are typically human, highly subjective, and eventually social. The present paper introduces an architecture which is capable of evaluating aesthetic characteristics of artifacts and of creating artifacts that obey certain aesthetic properties. The development methodology and motivation, as well as the results achieved by the various components of the architecture, are described. The potential contributions of this type of systems in the context of digital art are also considered.http://www.sciencedirect.com/science/article/B6TYG-4PTMXVB-1/1/265a0f6c8e478822e6de32b87bc2fb1
    • …
    corecore