1,661 research outputs found

    Toward reduction of artifacts in fused images

    Get PDF
    Most fusion satellite image methodologies at pixel-level introduce false spatial details, i.e.artifacts, in the resulting fusedimages. In many cases, these artifacts appears because image fusion methods do not consider the differences in roughness or textural characteristics between different land covers. They only consider the digital values associated with single pixels. This effect increases as the spatial resolution image increases. To minimize this problem, we propose a new paradigm based on local measurements of the fractal dimension (FD). Fractal dimension maps (FDMs) are generated for each of the source images (panchromatic and each band of the multi-spectral images) with the box-counting algorithm and by applying a windowing process. The average of source image FDMs, previously indexed between 0 and 1, has been used for discrimination of different land covers present in satellite images. This paradigm has been applied through the fusion methodology based on the discrete wavelet transform (DWT), using the à trous algorithm (WAT). Two different scenes registered by optical sensors on board FORMOSAT-2 and IKONOS satellites were used to study the behaviour of the proposed methodology. The implementation of this approach, using the WAT method, allows adapting the fusion process to the roughness and shape of the regions present in the image to be fused. This improves the quality of the fusedimages and their classification results when compared with the original WAT metho

    Fractal Analysis of Microstructural and Fractograpghic Images for Evaluation of Materials

    Get PDF
    Materials have hierarchically organized complex structures at different length scales. Quantitative description of material behaviour is dependent on four fundamental length scales [1], which are of concern to materials scientists. These are (1) nano scale, 1-103 nm, (2)micro scale, 1-10 3 μm, (3) macro scale, 1-103mm, and (4) global size scale, 1-106 m. While the nano scale corresponds to, often, highly ordered atomic structures, the global size scale relates geophysical phenomena and large man made engineering structures. Micro scale and macro scale correspond to size of material samples used in laboratories, for designing and for fabrication of miniature to small machineries

    Measurement and Modeling of Spontaneous Imbibition of Water into Unsaturated, Fractured Low-Porosity Rocks

    Get PDF
    Spontaneous imbibition (SI) is a capillary-driven flow process, in which a wetting fluid enters a porous medium displacing a preexisting non-wetting fluid. In low-porosity rocks SI generally occurs slowly within the matrix. However, fractured low-porosity rocks allow pathways for rapid SI to occur which can directly influence oil and gas recovery, fracturing fluid loss, leakage from deep waste storage repositories, and the degradation of building materials. Previous research has typically focused on the measurement and modeling of SI in high porosity systems, with little attention given to low-porosity rocks. Furthermore, SI models generally idealize a fracture as a gap formed between parallel flat surfaces, disregarding fracture roughness. Here, a new analytical model was derived for the early-time SI behavior within a fracture bounded by parallel rough fractal surfaces. The model was tested by fitting it to experimental data for the SI of deionized water into air-filled fractures collected on a suite of low-porosity rocks (Burlington Limestone, Crossville Sandstone, Mancos Shale, Sierra White Granite, Vermilion Bay Granite, and Westerly Granite). The SI data were obtained using dynamic neutron radiography at ORNL’s Neutron Imaging Facility (beam CG-1D, HFIR). Height of wetting versus time was delineated using change point analysis. The fracture aperture width and fracture sorptivity were also quantified. Among all rock types, geometric mean aperture widths ranged from 84 to 205 μm, with igneous cores producing larger apertures than sedimentary cores. Wetting fronts within the fractures generally exhibited a square-root of time behavior. Fracture sorptivity values ranged from 13.2 to 33.7 mm·s-0.5 with sedimentary cores yielding higher values than igneous cores. Differences in fracture surface roughness explained the majority of the variance in the fracture sorptivity values. The newly-derived fractal model fitted the experimental SI data very well for all cores investigated. Inversely estimated surface fractal dimensions, ��, all fell within the theoretical bounds of 2 ≤ �� \u3c 3, thereby validating this modeling approach for fractured low-porosity rocks. Future research should focus on forward prediction of SI through independent measurements of �� and extension of the fractal SI model to late-times through the inclusion of gravity

    Surface modification of zirconia-based bioceramics for orthopedic and dental applications

    Get PDF
    Debido a sus excelentes propiedades mecánicas y una excelente biocompatibilidad, el uso de las cerámicas de base de circona en aplicaciones dentales y ortopédicas ha crecido rápidamente durante las últimas décadas. Sin embargo, tanto la alúmina como la circona son bioinertes, lo cual dificulta su implantación en contacto directo con el hueso. Además, las infecciones siguen siendo una de las principales causas de fallo de implantes. Para resolver ambos problemas, se requiere un mejor diseño de la superficie: en particular, una topografía adecuada puede promover la osteointegración y limitar la adhesión bacteriana. Por otro lado, la fiabilidad a largo plazo es un asunto crítico para los implantes estructurales, y las cerámicas que contienen circona requieren una atención especial. Como para otras cerámicas, las alteraciones superficiales pueden comprometer sus propiedades mecánicas. Además, la transformación de fase de tetragonal a monoclínica, que les proporciona una tenacidad excepcional, puede ocurrir espontáneamente en presencia de agua, lo cual puede afectar las propiedades del material. La cinética de este fenómeno, conocido como envejecimiento hidrotérmico, es muy sensible a los cambios de procesamiento. Por lo tanto, cualquier modificación de la superficie debe ir acompañada de una evaluación de su impacto en la fiabilidad de los implantes. Basado en estas observaciones, el objetivo de esta tesis fue desarrollar procesos para modificar la superficie de los implantes a base de circona, en particular la topografía, sin comprometer sus propiedades mecánicas y estabilidad hidrotérmica. El esfuerzo de investigación se centró en dos materiales: la circona estabilizada con itria (3Y-TZP), que se utiliza cada vez más para aplicaciones dentales (por ejemplo: coronas, implantes), y la alúmina reforzada con circona (ZTA), que es el estándar actual en ortopedia para la fabricación de componentes cerámicos estructurales. Por lo tanto, este trabajo se puede dividir en dos partes principales. En la primera parte, se llevó a cabo un amplio estudio del ataque de la circona con ácido fluorhídrico (HF). Se demostró que ajustando el tiempo de decapado es posible controlar la rugosidad y la dimensión fractal de la superficie. Además, los resultados indican condiciones adecuadas para incrementar la rugosidad de forma rápida y uniforme, sin comprometer su resistencia mecánica ni tampoco su resistencia al envejecimiento. Basándose en estos hallazgos, se obtuvieron muestras con gradientes de rugosidad mediante inmersión con una velocidad controlada en una solución de ataque. Gracias a este método, que reduce drásticamente los esfuerzos y recursos necesarios para estudiar las interacciones célula-superficie, se realizó un análisis rápido de la influencia de la micro- y nano-topografía inducida por HF en las células madre mesenquimales. Se determinaron correlaciones entre parámetros de rugosidad y morfología celular, destacando la importancia de la optimización de la topografía a múltiples escalas para inducir la respuesta celular deseada. En la segunda parte, una estrategia integrada fue desarrollada para proporcionar propiedades antibacterianas y osteointegrativas a las superficies de ZTA La micro-topografía se controló mediante moldeo por inyección. Mientras tanto, un nuevo procedimiento que implica la disolución selectiva de la circona por HF (ataque selectivo) se utilizó para producir nano-rugosidad y una nanoporosidad superficial interconectada. La utilización potencial de la porosidad para la liberación de antibióticos fue demostrada, y se evidenció que la encapsulación liposomal puede aumentar la cantidad de fármaco cargada. Además, se demostró que el impacto del ataque selectivo sobre las propiedades mecánicas y la estabilidad hidrotermal era limitado. Por lo tanto, la combinación del moldeo por inyección y del ataque selectivo parece prometedora para la fabricación de componentes de ZTA implantables en contacto directo con el huesoDue to their outstanding mechanical properties and excellent biocompatibility, the use of zirconia-based ceramics in dental and orthopedic applications has grown rapidly over the last decades. However, both alumina and zirconia are bioinert, which hampers their implantation in direct contact with bone. Furthermore, infections remain one of the leading causes of implant failure. To address both issues, an improved surface design is required: in particular, an adequate topography can promote osseointegration and limit bacterial adhesion. On the other hand, long-term reliability is a major concern for load-bearing implants, and zirconia-containing ceramics require special attention. As for other ceramics, surface alterations can impair their mechanical properties. Besides, the tetragonal to monoclinic phase transformation, which accounts for their exceptional toughness, can occur spontaneously in the presence of water, potentially deteriorating the material properties. The kinetics of this phenomenon, known as hydrothermal ageing, are highly sensitive to processing changes. Any surface modification of zirconia-containing ceramics should thus be accompanied by a careful assessment of its impact on implant reliability. Based on these observations, the objective of this thesis was to develop processes to modify the surface of zirconia-based implants, in particular the topography, without compromising their mechanical properties and hydrothermal stability. The research effort focused on two materials of particular interest: yttria-stabilized zirconia (3Y-TZP), which is increasingly used for prosthodontic applications (e.g., crowns, implants), and zirconia toughened alumina (ZTA), which is the current gold Standard in orthopedics for the fabrication of load-bearing ceramic components. Accordingly, this work can be divided into two main parts. In the first part, an extensive study of the hydrofluoric acid (HF) etching of zirconia was carried out. It was shown that monitoring etching time allows controlling the roughness and fractal dimension of the surface. Furthermore, the results indicated suitable processing conditions for a fast and uniform roughening of zirconia components, without compromising substantially their strength and ageing resistance. Based on these findings, zirconia samples with roughness gradients were obtained by immersing specimens into an etching solution with a controlled speed. Thanks to this method, which drastically reduces the efforts and resources necessary to study cell-surface interactions, a rapid screening of the influence of HF-induced micro- and nano-topography on mesenchymal stem cell morphology was conducted. Correlations between roughness parameters and cell morphology were evidenced, highlighting the importance of multiscale optimization of topography to induce the desired cell response. In the second part, an integrated strategy was developed to provide both osseointegrative and antibacterial properties to ZTA surfaces. The micro-topography was controlled by injection molding. Meanwhile a novel process involving the selective dissolution of zirconia by HF (selective etching) was used to produce nano-roughness and interconnected Surface nanoporosity. Potential utilization of the porosity for delivery of antibiotic molecules was demonstrated, and it was shown that liposomal encapsulation could improve drug loading. Furthermore, the impact of selective etching on mechanical properties and hydrothermal stability was shown to be limited. The combination of injection molding and selective etching thus appears promising for fabricating a new generation of ZTA components implantable in direct contact with bone
    • …
    corecore