17,412 research outputs found

    Fractal approximation of 2-D object

    Get PDF
    We present some new techniques for shape approximation with fractals, using iterated function system, a powerful method which allows good control on the resulting fractal. The main point discussed here can be stated as follows : given a grey level image A, find a few number of functions and associated probabilities that approximately generate A. Two directions have been explored : the first uses a gradient method, thus it was necessary to define a smooth error function ; the second one is based upon the ideas of simulated annealing. We then generalize the methods to a broader class of functions, and present some results

    Elastic Scattering by Deterministic and Random Fractals: Self-Affinity of the Diffraction Spectrum

    Full text link
    The diffraction spectrum of coherent waves scattered from fractal supports is calculated exactly. The fractals considered are of the class generated iteratively by successive dilations and translations, and include generalizations of the Cantor set and Sierpinski carpet as special cases. Also randomized versions of these fractals are treated. The general result is that the diffraction intensities obey a strict recursion relation, and become self-affine in the limit of large iteration number, with a self-affinity exponent related directly to the fractal dimension of the scattering object. Applications include neutron scattering, x-rays, optical diffraction, magnetic resonance imaging, electron diffraction, and He scattering, which all display the same universal scaling.Comment: 20 pages, 11 figures. Phys. Rev. E, in press. More info available at http://www.fh.huji.ac.il/~dani

    Fractal-cluster theory and thermodynamic principles of the control and analysis for the self-organizing systems

    Full text link
    The theory of resource distribution in self-organizing systems on the basis of the fractal-cluster method has been presented. This theory consists of two parts: determined and probable. The first part includes the static and dynamic criteria, the fractal-cluster dynamic equations which are based on the fractal-cluster correlations and Fibonacci's range characteristics. The second part of the one includes the foundations of the probable characteristics of the fractal-cluster system. This part includes the dynamic equations of the probable evolution of these systems. By using the numerical researches of these equations for the stationary case the random state field of the one in the phase space of the DD, HH, FF criteria have been obtained. For the socio-economical and biological systems this theory has been tested.Comment: 37 pages, 20 figures, 4 table

    Chaos and Order in Models of Black Hole Pairs

    Get PDF
    Chaos in the orbits of black hole pairs has by now been confirmed by several independent groups. While the chaotic behavior of binary black hole orbits is no longer argued, it remains difficult to quantify the importance of chaos to the evolutionary dynamics of a pair of comparable mass black holes. None of our existing approximations are robust enough to offer convincing quantitative conclusions in the most highly nonlinear regime. It is intriguing to note that in three different approximations to a black hole pair built of a spinning black hole and a non-spinning companion, two approximations exhibit chaos and one approximation does not. The fully relativistic scenario of a spinning test-mass around a Schwarzschild black hole shows chaos, as does the Post-Newtonian Lagrangian approximation. However, the approximately equivalent Post-Newtonian Hamiltonian approximation does not show chaos when only one body spins. It is well known in dynamical systems theory that one system can be regular while an approximately related system is chaotic, so there is no formal conflict. However,the physical question remains, Is there chaos for comparable mass binaries when only one object spins? We are unable to answer this question given the poor convergence of the Post-Newtonian approximation to the fully relativistic system. A resolution awaits better approximations that can be trusted in the highly nonlinear regime
    • …
    corecore