792 research outputs found

    Self-Organized Sociopolitical Interactions as the Best Way to Achieve Organized Patterns in Human Social Systems: Going Beyond the Top-Down Control of Classical Political Regimes

    Full text link
    The dissertation extrapolates the theory of self-organization in biological organisms to sociopolitical self-organization, in human social systems. It is stated that the latter is the best way to organize human social systems, given their complex nature and the impossibility of the computational dynamics that classical political regimes must perform in order to, unsuccesfully, try to organize human social systems by means of top-down control. Sociopolitical self-organization is presented as the optimal producer of order in human social systems, and it is claimed that anarchic complex networks are the resulting structures.Comment: Originally published in: Repository, Universidad del Rosario Link: http://repository.urosario.edu.co/handle/10336/4387 (2013

    PedVis: A Structured, Space-Efficient Technique for Pedigree Visualization

    Full text link

    iTools: A Framework for Classification, Categorization and Integration of Computational Biology Resources

    Get PDF
    The advancement of the computational biology field hinges on progress in three fundamental directions โ€“ the development of new computational algorithms, the availability of informatics resource management infrastructures and the capability of tools to interoperate and synergize. There is an explosion in algorithms and tools for computational biology, which makes it difficult for biologists to find, compare and integrate such resources. We describe a new infrastructure, iTools, for managing the query, traversal and comparison of diverse computational biology resources. Specifically, iTools stores information about three types of resourcesโ€“data, software tools and web-services. The iTools design, implementation and resource meta - data content reflect the broad research, computational, applied and scientific expertise available at the seven National Centers for Biomedical Computing. iTools provides a system for classification, categorization and integration of different computational biology resources across space-and-time scales, biomedical problems, computational infrastructures and mathematical foundations. A large number of resources are already iTools-accessible to the community and this infrastructure is rapidly growing. iTools includes human and machine interfaces to its resource meta-data repository. Investigators or computer programs may utilize these interfaces to search, compare, expand, revise and mine meta-data descriptions of existent computational biology resources. We propose two ways to browse and display the iTools dynamic collection of resources. The first one is based on an ontology of computational biology resources, and the second one is derived from hyperbolic projections of manifolds or complex structures onto planar discs. iTools is an open source project both in terms of the source code development as well as its meta-data content. iTools employs a decentralized, portable, scalable and lightweight framework for long-term resource management. We demonstrate several applications of iTools as a framework for integrated bioinformatics. iTools and the complete details about its specifications, usage and interfaces are available at the iTools web page http://iTools.ccb.ucla.edu

    Refinamiento de los algoritmos de dimensionado y posicionamiento de nodos en รกrboles de conos

    Get PDF
    En el presente artรญculo se estudiaron con detalle los algoritmos de posicionamiento, dimensionado y rotaciรณn dinรกmica de conos actualmente conocidos en รกrboles de conos. Se realiza un anรกlisis orientado a refinar los algoritmos, entender su entorno y mejorar su eficiencia desde el punto de vista de tiempo de ejecuciรณn asรญ como la necesidad y posibilidad de que se presenten choques entre los subรกrboles. Se ofrece tambiรฉn una mejora al algoritmo base para disminuir los casos en que se presentan estos choques

    Explorative Graph Visualization

    Get PDF
    Netzwerkstrukturen (Graphen) sind heutzutage weit verbreitet. Ihre Untersuchung dient dazu, ein besseres Verstรคndnis ihrer Struktur und der durch sie modellierten realen Aspekte zu gewinnen. Die Exploration solcher Netzwerke wird zumeist mit Visualisierungstechniken unterstรผtzt. Ziel dieser Arbeit ist es, einen รœberblick รผber die Probleme dieser Visualisierungen zu geben und konkrete Lรถsungsansรคtze aufzuzeigen. Dabei werden neue Visualisierungstechniken eingefรผhrt, um den Nutzen der gefรผhrten Diskussion fรผr die explorative Graphvisualisierung am konkreten Beispiel zu belegen.Network structures (graphs) have become a natural part of everyday life and their analysis helps to gain an understanding of their inherent structure and the real-world aspects thereby expressed. The exploration of graphs is largely supported and driven by visual means. The aim of this thesis is to give a comprehensive view on the problems associated with these visual means and to detail concrete solution approaches for them. Concrete visualization techniques are introduced to underline the value of this comprehensive discussion for supporting explorative graph visualization

    ํŠธ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•œ 3์ฐจ์› ๊ณต๊ฐ„ ๋‚ด ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋ฏธ์ˆ ๋Œ€ํ•™ ๋””์ž์ธํ•™๋ถ€ ๋””์ž์ธ์ „๊ณต, 2019. 2. ๊น€์ˆ˜์ •.Speculative visualization combines both data visualization methods and aesthetics to draw attention to specific social, political and environmental issues. The speculative data visualization project proposed in this work explores electronic waste trade and the environmental performance of various nations. Illegal trading of electronic waste without proper disposal and recycling measures has a severe impact on both human health and the environment. This trade can be represented as a network data structure. The overall environmental health and ecosystem vitality of those trading countries, represented by their Environmental Performance Index (EPI), can also give greater insight into this issue. This EPI data has a hierarchical structure. This work explores methods to visualize these two data sets simultaneously in a manner that allows for analytical exploration of the data while communicating its underlying meaning. This project-based design research specifically focuses on visualizing hierarchical datasets with a node-link type tree structure and suggests a novel data visualization method, called the data garden, to visualize these hierarchical datasets within a spatial network. This draws inspiration from networks found between trees in nature. This is applied to the illegal e-waste trade and environmental datasets to provoke discussion, provide a holistic understanding and improve the peoples awareness on these issues. This uses both analytical data visualization techniques, along with a more aesthetic approach. The data garden approach is used to create a 3D interactive data visualization that users can use to navigate and explore the data in a meaningful way while also providing an emotional connection to the subject. This is due to the ability of the data garden approach to accurately show the underlying data while also closely mimicking natural structures. The visualization project intends to encourage creative professionals to create both visually appealing and thought-provoking data visualizations on significant issues that can reach a mass audience and improve awareness of citizens. Additionally, this design research intends to cause further discussion on the role of aesthetics and creative practices in data visualizations.์‚ฌ๋ณ€์  ์‹œ๊ฐํ™”(speculative visualization)๋Š” ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๋ฐฉ๋ฒ•๊ณผ ๋ฏธํ•™์„ ๊ฒฐํ•ฉํ•˜์—ฌ ํŠน์ •ํ•œ ์‚ฌํšŒ, ์ •์น˜ ๋ฐ ํ™˜๊ฒฝ ๋ฌธ์ œ์— ๊ด€์‹ฌ์„ ์œ ๋„ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ œ์•ˆํ•œ ์‚ฌ๋ณ€์  ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ํ”„๋กœ์ ํŠธ๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๊ตญ๊ฐ€์˜ ์ „์ž ํ๊ธฐ๋ฌผ ๊ฑฐ๋ž˜์™€ ํ™˜๊ฒฝ ์„ฑ๊ณผ๋ฅผ ์‚ดํŽด๋ด…๋‹ˆ๋‹ค. ์ ์ ˆํ•œ ์ฒ˜๋ฆฌ์™€ ์žฌํ™œ์šฉ ์กฐ์น˜๊ฐ€ ์ด๋ค„์ง€์ง€ ์•Š์€ ์ „์žํ๊ธฐ๋ฌผ์˜ ๋ถˆ๋ฒ• ๊ฑฐ๋ž˜๋Š” ํ™˜๊ฒฝ๊ณผ ์ธ๊ฐ„์— ์‹ฌ๊ฐํ•œ ์˜ํ–ฅ์„ ๋ฏธ์นฉ๋‹ˆ๋‹ค. ์ด ๊ฑฐ๋ž˜๋Š” ๋„คํŠธ์›Œํฌ ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ™˜๊ฒฝ์„ฑ๊ณผ์ง€์ˆ˜(EPI)๋ฅผ ํ†ตํ•ด ์ด ๊ฑฐ๋ž˜์— ์ฐธ์—ฌํ•˜๋Š” ๊ตญ๊ฐ€๋“ค์˜ ์ „๋ฐ˜์ ์ธ ํ™˜๊ฒฝ ๋ณด๊ฑด๊ณผ ์ƒํƒœ๊ณ„ ํ™œ๋ ฅ์„ ์‚ดํŽด๋ณด๋Š” ๊ฒƒ์€ ์ด ๋ฌธ์ œ์— ๋” ๊นŠ์€ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ํ™˜๊ฒฝ์„ฑ๊ณผ์ง€์ˆ˜๋Š” ๊ณ„์ธต ๊ตฌ์กฐ๋กœ ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„์ ์œผ๋กœ ํƒ๊ตฌํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋‘ ๊ฐ€์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ๋™์‹œ์— ์‹œ๊ฐํ™”ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ํ‘œ๋ฉด์— ๋“œ๋Ÿฌ๋‚˜์ง€ ์•Š๋Š” ๋ฐ์ดํ„ฐ์˜ ์˜๋ฏธ๋ฅผ ์ „๋‹ฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํ”„๋กœ์ ํŠธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ๋””์ž์ธ ์—ฐ๊ตฌ๋กœ, ๋…ธ๋“œ ๋งํฌ ์œ ํ˜• ํŠธ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ๊ณ„์ธต์  ๋ฐ์ดํ„ฐ๋ฅผ ์‹œ๊ฐํ™”ํ•˜๋Š” ๊ฒƒ์— ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ž์—ฐ์—์„œ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ๋Š” ๋‚˜๋ฌด ๊ฐ„ ๋„คํŠธ์›Œํฌ์—์„œ ์˜๊ฐ์„ ์–ป์–ด ๊ณต๊ฐ„ ๋„คํŠธ์›Œํฌ์—์„œ ๊ณ„์ธต์  ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์ •์›์ด๋ผ๊ณ  ํ•˜๋Š” ์ด ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๋ฐฉ๋ฒ•์„ ๋ถˆ๋ฒ• ์ „์ž ํ๊ธฐ๋ฌผ ๊ฑฐ๋ž˜์™€ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜์—ฌ ํ† ๋ก ์„ ์œ ๋ฐœํ•˜๊ณ  ์ „์ฒด์ ์ธ ์ดํ•ด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์— ๋Œ€ํ•œ ์‚ฌ๋žŒ๋“ค์˜ ์ธ์‹์„ ๊ฐœ์„ ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋ณด๋‹ค ๋ฏธ์ ์ธ ์ ‘๊ทผ๊ณผ ๋ถ„์„์  ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๊ธฐ์ˆ ์„ ๋ชจ๋‘ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์ •์›์„ ํ†ตํ•œ ์ ‘๊ทผ์œผ๋กœ ์‚ผ์ฐจ์› ๋Œ€ํ™”ํ˜• ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์‹œ๊ฐํ™”๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ์ž๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์˜๋ฏธ ์žˆ๋Š” ๋ฐฉ์‹์œผ๋กœ ์‚ดํŽด๋ณด๋Š” ๋™์‹œ์— ์ฃผ์ œ์™€ ๊ฐ์„ฑ์ ์ธ ์—ฐ๊ฒฐ์„ ๋ฐ›์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ฐ์ดํ„ฐ ์ •์› ๋ฐฉ๋ฒ•์ด ๋ฐ์ดํ„ฐ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๋ณด์—ฌ์ฃผ๋Š” ๋™์‹œ์— ์ž์—ฐ ๊ตฌ์กฐ๋ฅผ ๋ฉด๋ฐ€ํ•˜๊ฒŒ ๋ชจ๋ฐฉํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ๋ณธ ์‹œ๊ฐํ™” ํ”„๋กœ์ ํŠธ๋Š” ์ฐฝ์˜์ ์ธ ์ „๋ฌธ๊ฐ€๋“ค์ด ์ค‘์š”ํ•œ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์‹œ๊ฐ์ ์œผ๋กœ ๋งค๋ ฅ์ ์ด๊ณ  ์ƒ๊ฐ์„ ์ž๊ทนํ•˜๋Š” ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”๋ฅผ ๋งŒ๋“ค์–ด ๋Œ€์ค‘์—๊ฒŒ ๋„๋‹ฌํ•˜๊ณ  ์‹œ๋ฏผ๋“ค์˜ ์ธ์‹์„ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋ณธ ๋””์ž์ธ ์—ฐ๊ตฌ๋Š” ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”์—์„œ ๋ฏธํ•™๊ณผ ์ฐฝ์กฐ์ ์ธ ์‹ค์ฒœ์˜ ์—ญํ• ์— ๋Œ€ํ•œ ๋” ๋งŽ์€ ๋…ผ์˜๋ฅผ ์œ ๋„ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.Abstract I Table of Contents III List of Figures VI 1. Introduction 1 1.1 Research Background 2 1.2 Research Goal and Method 6 1.3 Terminology 9 2. Hierarchical Relationships: Trees 14 2.1 The History of Tree Diagrams 16 2.1.1 Significance of Trees 16 2.1.2 Aristotles Hierarchical Order of Life 19 2.1.3 Early Religious Depictions of Hierarchical Structures 22 2.1.4 Depicting Evolution 26 2.2 Tree Structures 29 2.3 Tree Layouts 31 3. Complex Relationships: Networks 34 3.1 Attributes of Networks 36 3.1.1 Interdependence and Interconnectedness 38 3.1.2 Decentralization 42 3.1.3 Nonlinearity 45 3.1.4 Multiplicity 46 3.2 Spatial Networks 46 3.3 Combining Tree Structures and Networks 48 4. Design Study Goals and Criteria 51 4.1 Objectives of the Design Study 71 4.2 Data Visualization Approaches 54 4.3 Criteria of Data Visualization 57 4.3.1 Aesthetics 58 4.3.2 Information Visualization Principles 62 4.3.2.1 Visual Cues in Data Visualization 62 4.3.2.2 Gestalt Principles 65 4.3.2.3 Increasing Efficiency of Network Visualizations 67 4.4 Case Study 70 5. Design Study: Data Garden Method 78 5.1 Concept of the Data Garden Structure 79 5.2 Data Garden Tree Structure 84 5.2.1 360ยฐVertical Branches 85 5.2.2 Break Point of the Branches 87 5.2.3 Aligning Hierarchy Levels 89 5.2.3.1 Design 01 โ€“ Extend Method 90 5.2.3.2 Design 02 โ€“ Collapse Method 91 5.2.4 Node Placement Technique 92 5.3 Conveying 3D Information 95 6. Design Study: Visualization Project 98 6.1 Theme 99 6.1.1 E-waste Trade 100 6.1.2 Environmental Performance Index 102 6.2 Visual Design Concept 104 6.3 Assigning Attributes 105 6.4 Visual Design Process 107 6.4.1 Leaf (Node) Design Process 107 6.4.1.1 Leaf Inspiration 107 6.4.1.2 Leaf Design 108 6.4.1.3 Leaf Area Calculation and Alignment 113 6.4.2 Stem (Branch) Design Process 116 6.4.3 Root (Link) Design Process 117 6.5 Interaction Design 118 6.5.1 Navigation 118 6.5.2 User Interface 119 6.5.3 Free and Detail Modes 120 6.5.4 Data Details 121 6.6 Visualization Renders 122 6.7 Exhibition 129 7. Conclusion 131 7.1 Conclusion 132 7.2 Limitations and Further Research 133 Bibliography 135 ๊ตญ๋ฌธ์ดˆ๋ก (Abstract in Korean) 144Docto

    ScaleTrotter: Illustrative Visual Travels Across Negative Scales

    Full text link
    We present ScaleTrotter, a conceptual framework for an interactive, multi-scale visualization of biological mesoscale data and, specifically, genome data. ScaleTrotter allows viewers to smoothly transition from the nucleus of a cell to the atomistic composition of the DNA, while bridging several orders of magnitude in scale. The challenges in creating an interactive visualization of genome data are fundamentally different in several ways from those in other domains like astronomy that require a multi-scale representation as well. First, genome data has intertwined scale levels---the DNA is an extremely long, connected molecule that manifests itself at all scale levels. Second, elements of the DNA do not disappear as one zooms out---instead the scale levels at which they are observed group these elements differently. Third, we have detailed information and thus geometry for the entire dataset and for all scale levels, posing a challenge for interactive visual exploration. Finally, the conceptual scale levels for genome data are close in scale space, requiring us to find ways to visually embed a smaller scale into a coarser one. We address these challenges by creating a new multi-scale visualization concept. We use a scale-dependent camera model that controls the visual embedding of the scales into their respective parents, the rendering of a subset of the scale hierarchy, and the location, size, and scope of the view. In traversing the scales, ScaleTrotter is roaming between 2D and 3D visual representations that are depicted in integrated visuals. We discuss, specifically, how this form of multi-scale visualization follows from the specific characteristics of the genome data and describe its implementation. Finally, we discuss the implications of our work to the general illustrative depiction of multi-scale data
    • โ€ฆ
    corecore