315 research outputs found

    Fast Frechet Distance Between Curves With Long Edges

    Full text link
    Computing the Fr\'echet distance between two polygonal curves takes roughly quadratic time. In this paper, we show that for a special class of curves the Fr\'echet distance computations become easier. Let PP and QQ be two polygonal curves in Rd\mathbb{R}^d with nn and mm vertices, respectively. We prove four results for the case when all edges of both curves are long compared to the Fr\'echet distance between them: (1) a linear-time algorithm for deciding the Fr\'echet distance between two curves, (2) an algorithm that computes the Fr\'echet distance in O((n+m)log(n+m))O((n+m)\log (n+m)) time, (3) a linear-time d\sqrt{d}-approximation algorithm, and (4) a data structure that supports O(mlog2n)O(m\log^2 n)-time decision queries, where mm is the number of vertices of the query curve and nn the number of vertices of the preprocessed curve

    A Pontryagin Maximum Principle in Wasserstein Spaces for Constrained Optimal Control Problems

    Get PDF
    In this paper, we prove a Pontryagin Maximum Principle for constrained optimal control problems in the Wasserstein space of probability measures. The dynamics, is described by a transport equation with non-local velocities and is subject to end-point and running state constraints. Building on our previous work, we combine the classical method of needle-variations from geometric control theory and the metric differential structure of the Wasserstein spaces to obtain a maximum principle stated in the so-called Gamkrelidze form.Comment: 35 page

    Approximating the Packedness of Polygonal Curves

    Get PDF
    In 2012 Driemel et al. \cite{DBLP:journals/dcg/DriemelHW12} introduced the concept of cc-packed curves as a realistic input model. In the case when cc is a constant they gave a near linear time (1+ε)(1+\varepsilon)-approximation algorithm for computing the Fr\'echet distance between two cc-packed polygonal curves. Since then a number of papers have used the model. In this paper we consider the problem of computing the smallest cc for which a given polygonal curve in Rd\mathbb{R}^d is cc-packed. We present two approximation algorithms. The first algorithm is a 22-approximation algorithm and runs in O(dn2logn)O(dn^2 \log n) time. In the case d=2d=2 we develop a faster algorithm that returns a (6+ε)(6+\varepsilon)-approximation and runs in O((n/ε3)4/3polylog(n/ε)))O((n/\varepsilon^3)^{4/3} polylog (n/\varepsilon))) time. We also implemented the first algorithm and computed the approximate packedness-value for 16 sets of real-world trajectories. The experiments indicate that the notion of cc-packedness is a useful realistic input model for many curves and trajectories.Comment: A preliminary version to appear in ISAAC 202

    Distance Measures for Embedded Graphs

    Get PDF
    We introduce new distance measures for comparing straight-line embedded graphs based on the Fr\'echet distance and the weak Fr\'echet distance. These graph distances are defined using continuous mappings and thus take the combinatorial structure as well as the geometric embeddings of the graphs into account. We present a general algorithmic approach for computing these graph distances. Although we show that deciding the distances is NP-hard for general embedded graphs, we prove that our approach yields polynomial time algorithms if the graphs are trees, and for the distance based on the weak Fr\'echet distance if the graphs are planar embedded. Moreover, we prove that deciding the distances based on the Fr\'echet distance remains NP-hard for planar embedded graphs and show how our general algorithmic approach yields an exponential time algorithm and a polynomial time approximation algorithm for this case.Comment: 27 pages, 14 Figure

    Fréchet Distance for Uncertain Curves

    Get PDF
    In this article, we study a wide range of variants for computing the (discrete and continuous) Fréchet distance between uncertain curves. An uncertain curve is a sequence of uncertainty regions, where each region is a disk, a line segment, or a set of points. A realisation of a curve is a polyline connecting one point from each region. Given an uncertain curve and a second (certain or uncertain) curve, we seek to compute the lower and upper bound Fréchet distance, which are the minimum and maximum Fréchet distance for any realisations of the curves. We prove that both problems are NP-hard for the Fréchet distance in several uncertainty models, and that the upper bound problem remains hard for the discrete Fréchet distance. In contrast, the lower bound (discrete [5] and continuous) Fréchet distance can be computed in polynomial time in some models. Furthermore, we show that computing the expected (discrete and continuous) Fréchet distance is #P-hard in some models.On the positive side, we present an FPTAS in constant dimension for the lower bound problem when Δ/δis polynomially bounded, where δis the Fréchet distance and Δbounds the diameter of the regions. We also show a near-linear-time 3-approximation for the decision problem on roughly δ-separated convex regions. Finally, we study the setting with Sakoe-Chiba time bands, where we restrict the alignment between the curves, and give polynomial-time algorithms for the upper bound and expected discrete and continuous Fréchet distance for uncertainty modelled as point sets.</p
    corecore