211 research outputs found

    OPTIMIZATION OF FPGA-BASED PROCESSOR ARCHITECTURE FOR SOBEL EDGE DETECTION OPERATOR

    Get PDF
    This dissertation introduces an optimized processor architecture for Sobel edge detection operator on field programmable gate arrays (FPGAs). The processor is optimized by the use of several optimization techniques that aim to increase the processor throughput and reduce the processor logic utilization and memory usage. FPGAs offer high levels of parallelism which is exploited by the processor to implement the parallel process of edge detection in order to increase the processor throughput and reduce the logic utilization. To achieve this, the proposed processor consists of several Sobel instances that are able to produce multiple output pixels in parallel. This parallelism enables data reuse within the processor block. Moreover, the processor gains performance with a factor equal to the number of instances contained in the processor block. The processor that consists of one row of Sobel instances exploits data reuse within one image line in the calculations of the horizontal gradient. Data reuse within one and multiple image lines is enabled by using a processor with multiple rows of Sobel instances which allow the reuse of both the horizontal and vertical gradients. By the application of the optimization techniques, the proposed Sobel processor is able to meet real-time performance constraints due to its high throughput even with a considerably low clock frequency. In addition, logic utilization of the processor is low compared to other Sobel processors when implemented on ALTERA Cyclone II DE2-70

    Computer vision algorithms on reconfigurable logic arrays

    Full text link

    Image Processing: towards a System on Chip

    Get PDF

    Image Processing Using FPGAs

    Get PDF
    This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs

    OPTIMIZATION OF FPGA-BASED PROCESSOR ARCHITECTURE FOR SOBEL EDGE DETECTION OPERATOR

    Get PDF
    This dissertation introduces an optimized processor architecture for Sobel edge detection operator on field programmable gate arrays (FPGAs). The processor is optimized by the use of several optimization techniques that aim to increase the processor throughput and reduce the processor logic utilization and memory usage. FPGAs offer high levels of parallelism which is exploited by the processor to implement the parallel process of edge detection in order to increase the processor throughput and reduce the logic utilization. To achieve this, the proposed processor consists of several Sobel instances that are able to produce multiple output pixels in parallel. This parallelism enables data reuse within the processor block. Moreover, the processor gains performance with a factor equal to the number of instances contained in the processor block. The processor that consists of one row of Sobel instances exploits data reuse within one image line in the calculations of the horizontal gradient. Data reuse within one and multiple image lines is enabled by using a processor with multiple rows of Sobel instances which allow the reuse of both the horizontal and vertical gradients. By the application of the optimization techniques, the proposed Sobel processor is able to meet real-time performance constraints due to its high throughput even with a considerably low clock frequency. In addition, logic utilization of the processor is low compared to other Sobel processors when implemented on ALTERA Cyclone II DE2-70

    An Investigation towards Effectiveness in Image Enhancement Process in MPSoC

    Get PDF
    Image enhancement has a primitive role in the vision-based applications. It involves the processing of the input image by boosting its visualization for various applications. The primary objective is to filter the unwanted noises, clutters, sharpening or blur. The characteristics such as resolution and contrast are constructively altered to obtain an outcome of an enhanced image in the bio-medical field. The paper highlights the different techniques proposed for the digital enhancement of images. After surveying these methods that utilize Multiprocessor System-on-Chip (MPSoC), it is concluded that these methodologies have little accuracy and hence none of them are efficiently capable of enhancing the digital biomedical images

    Configurable 3D-integrated focal-plane sensor-processor array architecture

    Get PDF
    A mixed-signal Cellular Visual Microprocessor architecture with digital processors is described. An ASIC implementation is also demonstrated. The architecture is composed of a regular sensor readout circuit array, prepared for 3D face-to-face type integration, and one or several cascaded array of mainly identical (SIMD) processing elements. The individual array elements derived from the same general HDL description and could be of different in size, aspect ratio, and computing resources

    FPGA implementations for parallel multidimensional filtering algorithms

    Get PDF
    PhD ThesisOne and multi dimensional raw data collections introduce noise and artifacts, which need to be recovered from degradations by an automated filtering system before, further machine analysis. The need for automating wide-ranged filtering applications necessitates the design of generic filtering architectures, together with the development of multidimensional and extensive convolution operators. Consequently, the aim of this thesis is to investigate the problem of automated construction of a generic parallel filtering system. Serving this goal, performance-efficient FPGA implementation architectures are developed to realize parallel one/multi-dimensional filtering algorithms. The proposed generic architectures provide a mechanism for fast FPGA prototyping of high performance computations to obtain efficiently implemented performance indices of area, speed, dynamic power, throughput and computation rates, as a complete package. These parallel filtering algorithms and their automated generic architectures tackle the major bottlenecks and limitations of existing multiprocessor systems in wordlength, input data segmentation, boundary conditions as well as inter-processor communications, in order to support high data throughput real-time applications of low-power architectures using a Xilinx Virtex-6 FPGA board. For one-dimensional raw signal filtering case, mathematical model and architectural development of the generalized parallel 1-D filtering algorithms are presented using the 1-D block filtering method. Five generic architectures are implemented on a Virtex-6 ML605 board, evaluated and compared. A complete set of results on area, speed, power, throughput and computation rates are obtained and discussed as performance indices for the 1-D convolution architectures. A successful application of parallel 1-D cross-correlation is demonstrated. For two dimensional greyscale/colour image processing cases, new parallel 2-D/3-D filtering algorithms are presented and mathematically modelled using input decimation and output image reconstruction by interpolation. Ten generic architectures are implemented on the Virtex-6 ML605 board, evaluated and compared. Key results on area, speed, power, throughput and computation rate are obtained and discussed as performance indices for the 2-D convolution architectures. 2-D image reconfigurable processors are developed and implemented using single, dual and quad MAC FIR units. 3-D Colour image processors are devised to act as 3-D colour filtering engines. A 2-D cross-correlator parallel engine is successfully developed as a parallel 2-D matched filtering algorithm for locating any MRI slice within a MRI data stack library. Twelve 3-D MRI filtering operators are plugged in and adapted to be suitable for biomedical imaging, including 3-D edge operators and 3-D noise smoothing operators. Since three dimensional greyscale/colour volumetric image applications are computationally intensive, a new parallel 3-D/4-D filtering algorithm is presented and mathematically modelled using volumetric data image segmentation by decimation and output reconstruction by interpolation, after simultaneously and independently performing 3-D filtering. Eight generic architectures are developed and implemented on the Virtex-6 board, including 3-D spatial and FFT convolution architectures. Fourteen 3-D MRI filtering operators are plugged and adapted for this particular biomedical imaging application, including 3-D edge operators and 3-D noise smoothing operators. Three successful applications are presented in 4-D colour MRI (fMRI) filtering processors, k-space MRI volume data filter and 3-D cross-correlator.IRAQI Government

    Embedded machine vision - a parallel architecture approach -

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Real-time human action recognition on an embedded, reconfigurable video processing architecture

    Get PDF
    Copyright @ 2008 Springer-Verlag.In recent years, automatic human motion recognition has been widely researched within the computer vision and image processing communities. Here we propose a real-time embedded vision solution for human motion recognition implemented on a ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human motion recognition system with simple motion features and a linear Support Vector Machine (SVM) classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template (eg. “motion history image”) class of approaches. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfiured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemented a human motion recognition system on this reconfigurable architecture. With a small number of human actions (hand gestures), this stand-alone system is performing reliably, with an 80% average recognition rate using limited training data. This type of system has applications in security systems, man-machine communications and intelligent environments.DTI and Broadcom Ltd
    corecore