3 research outputs found

    Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures

    Get PDF
    In clinical routine, ophthalmologists frequently analyze the shape and size of the foveal avascular zone (FAZ) to detect and monitor retinal diseases. In order to extract those parameters, the contours of the FAZ need to be segmented, which is normally achieved by analyzing the retinal vasculature (RV) around the macula in fluorescein angiograms (FA). Computer-aided segmentation methods based on deep learning (DL) can automate this task. However, current approaches for segmenting the FAZ are often tailored to a specific dataset or require manual initialization. Furthermore, they do not take the variability and challenges of clinical FA into account, which are often of low quality and difficult to analyze. In this paper we propose a DL-based framework to automatically segment the FAZ in challenging FA scans from clinical routine. Our approach mimics the workflow of retinal experts by using additional RV labels as a guidance during training. Hence, our model is able to produce RV segmentations simultaneously. We minimize the annotation work by using a multi-modal approach that leverages already available public datasets of color fundus pictures (CFPs) and their respective manual RV labels. Our experimental evaluation on two datasets with FA from 1) clinical routine and 2) large multicenter clinical trials shows that the addition of weak RV labels as a guidance during training improves the FAZ segmentation significantly with respect to using only manual FAZ annotations.Fil: Hofer, Dominik. Medizinische Universität Wien; AustriaFil: Schmidt Erfurth, Ursula. Medizinische Universität Wien; AustriaFil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Medizinische Universität Wien; AustriaFil: Goldbach, Felix. Medizinische Universität Wien; AustriaFil: Gerendas, Bianca S.. Medizinische Universität Wien; AustriaFil: Seeböck, Philipp. Medizinische Universität Wien; Austri

    Foveal avascular zone segmentation in optical coherence tomography angiography images using a deep learning approach

    Get PDF
    The purpose of this study was to introduce a new deep learning (DL) model for segmentation of the fovea avascular zone (FAZ) in en face optical coherence tomography angiography (OCTA) and compare the results with those of the device�s built-in software and manual measurements in healthy subjects and diabetic patients. In this retrospective study, FAZ borders were delineated in the inner retinal slab of 3 � 3 enface OCTA images of 131 eyes of 88 diabetic patients and 32 eyes of 18 healthy subjects. To train a deep convolutional neural network (CNN) model, 126 enface OCTA images (104 eyes with diabetic retinopathy and 22 normal eyes) were used as training/validation dataset. Then, the accuracy of the model was evaluated using a dataset consisting of OCTA images of 10 normal eyes and 27 eyes with diabetic retinopathy. The CNN model was based on Detectron2, an open-source modular object detection library. In addition, automated FAZ measurements were conducted using the device�s built-in commercial software, and manual FAZ delineation was performed using ImageJ software. Bland�Altman analysis was used to show 95 limit of agreement (95 LoA) between different methods. The mean dice similarity coefficient of the DL model was 0.94 ± 0.04 in the testing dataset. There was excellent agreement between automated, DL model and manual measurements of FAZ in healthy subjects (95 LoA of � 0.005 to 0.026 mm2 between automated and manual measurement and 0.000 to 0.009 mm2 between DL and manual FAZ area). In diabetic eyes, the agreement between DL and manual measurements was excellent (95 LoA of � 0.063 to 0.095), however, there was a poor agreement between the automated and manual method (95 LoA of � 0.186 to 0.331). The presence of diabetic macular edema and intraretinal cysts at the fovea were associated with erroneous FAZ measurements by the device�s built-in software. In conclusion, the DL model showed an excellent accuracy in detection of FAZ border in enfaces OCTA images of both diabetic patients and healthy subjects. The DL and manual measurements outperformed the automated measurements of the built-in software. © 2021, The Author(s)

    A reliable criterion for the correct delimitation of the foveal avascular zone in diabetic patients

    Get PDF
    Background: Manual segmentation of the Foveal Avascular Zone (FAZ) has a high level of variability. Research into retinas needs coherent segmentation sets with low variability. Methods: Retinal optical coherence tomography angiography (OCTA) images from type-1 diabetes mellitus (DM1), type-2 diabetes mellitus (DM2) and healthy patients were included. Superficial (SCP) and deep (DCP) capillary plexus FAZs were manually segmented by different observers. After comparing the results, a new criterion was established to reduce variability in the segmentations. The FAZ area and acircularity were also studied. Results: The new segmentation criterion produces smaller areas (closer to the real FAZ) with lower variability than the different criteria of the explorers in both plexuses for the three groups. This was particularly noticeable for the DM2 group with damaged retinas. The acircularity values were also slightly reduced with the final criterion in all groups. The FAZ areas with lower values showed slightly higher acircularity values. We also have a consistent and coherent set of segmentations with which to continue our research. Conclusions: Manual segmentations of FAZ are generally carried out with little attention to the consistency of the measurements. A novel criterion for segmenting the FAZ allows segmentations made by different observers to be more similar
    corecore