8 research outputs found

    Examining the Effects of Personalized Explanations in a Multi-list Food Recommender System

    Get PDF
    In the past decade, food recipe websites have become a popular approach to find a recipe. Due to the vast amount of options, food recommender systems have been devel- oped and used to suggest appetizing recipes. However, recommending appealing meals does not necessarily imply that they are healthy. Recent studies on recommender sys- tems have demonstrated a growing interest in altering the interface, where the usage of multi-list interfaces with explanations has been explored earlier in an unsuccessful at- tempt to encourage healthier food choices. Building upon other research that highlights the ability of personalized explanations to provide a better understanding of presented recommendations, this thesis explores whether a multi-list interface with personalized explanations, which takes into account user preferences, health, and nutritional aspects, can affect users’ evaluation and perception of a food recommender system, as well as steer them towards healthier choices. A food recommender system was develop, with which single- and multi-lists, as well as non-personalized and personalized explana- tions, were compared in an online experiment (N = 163) in which participants were requested to choose recipes they liked and to answer questionnaires. The analysis re- vealed that personalized explanations in a multi-list interface were not able to increase choice satisfaction, choice difficulty, understanding or support healthier choices. Sur- prisingly, users selected healthier recipes if non-personalized rather than personalized explanations were presented alongside them. In addition, users perceived multi-lists to be more diverse and found single-list to be more satisfying.Masteroppgave i informasjonsvitenskapINFO390MASV-INF

    Video Recommendations Based on Visual Features Extracted with Deep Learning

    Get PDF
    Postponed access: the file will be accessible after 2022-06-01When a movie is uploaded to a movie Recommender System (e.g., YouTube), the system can exploit various forms of descriptive features (e.g., tags and genre) in order to generate personalized recommendation for users. However, there are situations where the descriptive features are missing or very limited and the system may fail to include such a movie in the recommendation list, known as Cold-start problem. This thesis investigates recommendation based on a novel form of content features, extracted from movies, in order to generate recommendation for users. Such features represent the visual aspects of movies, based on Deep Learning models, and hence, do not require any human annotation when extracted. The proposed technique has been evaluated in both offline and online evaluations using a large dataset of movies. The online evaluation has been carried out in a evaluation framework developed for this thesis. Results from the offline and online evaluation (N=150) show that automatically extracted visual features can mitigate the cold-start problem by generating recommendation with a superior quality compared to different baselines, including recommendation based on human-annotated features. The results also point to subtitles as a high-quality future source of automatically extracted features. The visual feature dataset, named DeepCineProp13K and the subtitle dataset, CineSub3K, as well as the proposed evaluation framework are all made openly available online in a designated Github repository.Masteroppgave i informasjonsvitenskapINFO390MASV-INF

    An explainable recommender system based on semantically-aware matrix factorization.

    Get PDF
    Collaborative Filtering techniques provide the ability to handle big and sparse data to predict the ratings for unseen items with high accuracy. Matrix factorization is an accurate collaborative filtering method used to predict user preferences. However, it is a black box system that recommends items to users without being able to explain why. This is due to the type of information these systems use to build models. Although rich in information, user ratings do not adequately satisfy the need for explanation in certain domains. White box systems, in contrast, can, by nature, easily generate explanations. However, their predictions are less accurate than sophisticated black box models. Recent research has demonstrated that explanations are an essential component in bringing the powerful predictions of big data and machine learning methods to a mass audience without a compromise in trust. Explanations can take a variety of formats, depending on the recommendation domain and the machine learning model used to make predictions. Semantic Web (SW) technologies have been exploited increasingly in recommender systems in recent years. The SW consists of knowledge graphs (KGs) providing valuable information that can help improve the performance of recommender systems. Yet KGs, have not been used to explain recommendations in black box systems. In this dissertation, we exploit the power of the SW to build new explainable recommender systems. We use the SW\u27s rich expressive power of linked data, along with structured information search and understanding tools to explain predictions. More specifically, we take advantage of semantic data to learn a semantically aware latent space of users and items in the matrix factorization model-learning process to build richer, explainable recommendation models. Our off-line and on-line evaluation experiments show that our approach achieves accurate prediction with the additional ability to explain recommendations, in comparison to baseline approaches. By fostering explainability, we hope that our work contributes to more transparent, ethical machine learning without sacrificing accuracy

    Recommender system to support comprehensive exploration of large scale scientific datasets

    Get PDF
    Bases de dados de entidades científicas, como compostos químicos, doenças e objetos astronómicos, têm crescido em tamanho e complexidade, chegando a milhares de milhões de itens por base de dados. Os investigadores precisam de ferramentas novas e inovadoras para auxiliar na escolha desses itens. Este trabalho propõe o uso de Sistemas de Recomendação para auxiliar os investigadores a encontrar itens de interesse. Identificamos como um dos maiores desafios para a aplicação de sistemas de recomendação em áreas científicas a falta de conjuntos de dados padronizados e de acesso aberto com informações sobre as preferências dos utilizadores. Para superar esse desafio, desenvolvemos uma metodologia denominada LIBRETTI - Recomendação Baseada em Literatura de Itens Científicos, cujo objetivo é a criação de conjuntos de dados , relacionados com campos científicos. Estes conjuntos de dados são criados com base no principal recurso de conhecimento que a Ciência possui: a literatura científica. A metodologia LIBRETTI permitiu o desenvolvimento de novos algoritmos de recomendação específicos para vários campos científicos. Além do LIBRETTI, as principais contribuições desta tese são conjuntos de dados de recomendação padronizados nas áreas de Astronomia, Química e Saúde (relacionado com a doença COVID-19), um sistema de recomendação semântica híbrido para compostos químicos em conjuntos de dados de grande escala, uma abordagem híbrida baseada no enriquecimento sequencial (SeEn) para recomendações sequenciais, um pipeline baseado em semântica de vários campos para recomendar entidades biomédicas relacionadas com a doença COVID-19.Databases for scientific entities, such as chemical compounds, diseases and astronomical objects, are growing in size and complexity, reaching billions of items per database. Researchers need new and innovative tools for assisting the choice of these items. This work proposes the use of Recommender Systems approaches for helping researchers to find items of interest. We identified as one of the major challenges for applying RS in scientific fields the lack of standard and open-access datasets with information about the preferences of the users. To overcome this challenge, we developed a methodology called LIBRETTI - LIterature Based RecommEndaTion of scienTific Items, whose goal is to create datasets related to scientific fields. These datasets are created based on scientific literature, the major resource of knowledge that Science has. LIBRETTI methodology allowed the development and testing of new recommender algorithms specific for each field. Besides LIBRETTI, the main contributions of this thesis are standard and sequence-aware recommendation datasets in the fields of Astronomy, Chemistry, and Health (related to COVID-19 disease), a hybrid semantic recommender system for chemical compounds in large-scale datasets, a hybrid approach based on sequential enrichment (SeEn) for sequence-aware recommendations, a multi-field semantic-based pipeline for recommending biomedical entities related to COVID-19 disease
    corecore