1,481 research outputs found

    Phylogenetic mixtures on a single tree can mimic a tree of another topology

    Full text link
    Phylogenetic mixtures model the inhomogeneous molecular evolution commonly observed in data. The performance of phylogenetic reconstruction methods where the underlying data is generated by a mixture model has stimulated considerable recent debate. Much of the controversy stems from simulations of mixture model data on a given tree topology for which reconstruction algorithms output a tree of a different topology; these findings were held up to show the shortcomings of particular tree reconstruction methods. In so doing, the underlying assumption was that mixture model data on one topology can be distinguished from data evolved on an unmixed tree of another topology given enough data and the ``correct'' method. Here we show that this assumption can be false. For biologists our results imply that, for example, the combined data from two genes whose phylogenetic trees differ only in terms of branch lengths can perfectly fit a tree of a different topology

    Phylogenetic Algebraic Geometry

    Full text link
    Phylogenetic algebraic geometry is concerned with certain complex projective algebraic varieties derived from finite trees. Real positive points on these varieties represent probabilistic models of evolution. For small trees, we recover classical geometric objects, such as toric and determinantal varieties and their secant varieties, but larger trees lead to new and largely unexplored territory. This paper gives a self-contained introduction to this subject and offers numerous open problems for algebraic geometers.Comment: 15 pages, 7 figure
    • …
    corecore