81,566 research outputs found

    Causal and stable reduced-order model for linear high-frequency systems

    Get PDF
    With the ever-growing complexity of high-frequency systems in the electronic industry, formation of reduced-order models of these systems is paramount. In this reported work, two different techniques are combined to generate a stable and causal representation of the system. In particular, balanced truncation is combined with a Fourier series expansion approach. The efficacy of the proposed combined method is shown with an example

    A parametric macromodelling technique

    Get PDF
    With the ever growing complexity of high-frequency systems in the electronic industry, formation of reduced-order models or compact macromodels of these systems is paramount. In this contribution, a Fourier series expansion technique is extended to form a modeling strategy to approximate the frequency-domain behaviour of a system based on several design variables. In particular, it is intended to provide a tool for the designer to identify the effect of manufacturer tolerances and process fluctuations or irregularities on system behaviour

    An iterative semi-implicit scheme with robust damping

    Full text link
    An efficient, iterative semi-implicit (SI) numerical method for the time integration of stiff wave systems is presented. Physics-based assumptions are used to derive a convergent iterative formulation of the SI scheme which enables the monitoring and control of the error introduced by the SI operator. This iteration essentially turns a semi-implicit method into a fully implicit method. Accuracy, rather than stability, determines the timestep. The scheme is second-order accurate and shown to be equivalent to a simple preconditioning method. We show how the diffusion operators can be handled so as to yield the property of robust damping, i.e., dissipating the solution at all values of the parameter \mathcal D\dt, where D\mathcal D is a diffusion operator and \dt the timestep. The overall scheme remains second-order accurate even if the advection and diffusion operators do not commute. In the limit of no physical dissipation, and for a linear test wave problem, the method is shown to be symplectic. The method is tested on the problem of Kinetic Alfv\'en wave mediated magnetic reconnection. A Fourier (pseudo-spectral) representation is used. A 2-field gyrofluid model is used and an efficacious k-space SI operator for this problem is demonstrated. CPU speed-up factors over a CFL-limited explicit algorithm ranging from ∌20\sim20 to several hundreds are obtained, while accurately capturing the results of an explicit integration. Possible extension of these results to a real-space (grid) discretization is discussed.Comment: Submitted to the Journal of Computational Physics. Clarifications and caveats in response to referees, numerical demonstration of convergence rate, generalized symplectic proo

    Wave modelling - the state of the art

    Get PDF
    This paper is the product of the wave modelling community and it tries to make a picture of the present situation in this branch of science, exploring the previous and the most recent results and looking ahead towards the solution of the problems we presently face. Both theory and applications are considered. The many faces of the subject imply separate discussions. This is reflected into the single sections, seven of them, each dealing with a specific topic, the whole providing a broad and solid overview of the present state of the art. After an introduction framing the problem and the approach we followed, we deal in sequence with the following subjects: (Section) 2, generation by wind; 3, nonlinear interactions in deep water; 4, white-capping dissipation; 5, nonlinear interactions in shallow water; 6, dissipation at the sea bottom; 7, wave propagation; 8, numerics. The two final sections, 9 and 10, summarize the present situation from a general point of view and try to look at the future developments

    Volterra-series approach to stochastic nonlinear dynamics: linear response of the Van der Pol oscillator driven by white noise

    Full text link
    The Van der Pol equation is a paradigmatic model of relaxation oscillations. This remarkable nonlinear phenomenon of self-sustained oscillatory motion underlies important rhythmic processes in nature and electrical engineering. Relaxation oscillations in a real system are usually coupled to environmental noise, which further enriches their dynamics, but makes theoretical analysis of such systems and determination of the equation's parameter values a difficult task. In a companion paper we have proposed an analytic approach to a similar problem for another classical nonlinear model, the bistable Duffing oscillator. Here we extend our techniques to the case of the Van der Pol equation driven by white noise. We analyze the statistics of solutions and propose a method to estimate parameter values from the oscillator's time series. We use experimental data of active oscillations in a biological system to demonstrate how our method applies to real observations and how it can be generalized for more complex models.Comment: 12 pages, 6 figures, 1 tabl
    • 

    corecore