13,355 research outputs found

    High-contrast imaging of Sirius~A with VLT/SPHERE: Looking for giant planets down to one astronomical unit

    Get PDF
    Sirius has always attracted a lot of scientific interest, especially after the discovery of a companion white dwarf at the end of the 19th century. Very early on, the existence of a potential third body was put forward to explain some of the observed properties of the system. We present new coronagraphic observations obtained with VLT/SPHERE that explore, for the very first time, the innermost regions of the system down to 0.2" (0.5 AU) from Sirius A. Our observations cover the near-infrared from 0.95 to 2.3 ÎĽ\mum and they offer the best on-sky contrast ever reached at these angular separations. After detailing the steps of our SPHERE/IRDIFS data analysis, we present a robust method to derive detection limits for multi-spectral data from high-contrast imagers and spectrographs. In terms of raw performance, we report contrasts of 14.3 mag at 0.2", ~16.3 mag in the 0.4-1.0" range and down to 19 mag at 3.7". In physical units, our observations are sensitive to giant planets down to 11 MJupM_{Jup} at 0.5 AU, 6-7 MJupM_{Jup} in the 1-2 AU range and ~4 MJupM_{Jup} at 10 AU. Despite the exceptional sensitivity of our observations, we do not report the detection of additional companions around Sirius A. Using a Monte Carlo orbital analysis, we show that we can reject, with about 50% probability, the existence of an 8 MJupM_{Jup} planet orbiting at 1 AU. In addition to the results presented in the paper, we provide our SPHERE/IFS data reduction pipeline at http://people.lam.fr/vigan.arthur/ under the MIT license.Comment: 16 pages, 10 figures, accepted for publication in MNRA

    Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data

    Get PDF
    Background. Remotely-sensed environmental data from earth-orbiting satellites are increasingly used to model the distribution and abundance of both plant and animal species, especially those of economic or conservation importance. Time series of data from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensors on-board NASA's Terra and Aqua satellites offer the potential to capture environmental thermal and vegetation seasonality, through temporal Fourier analysis, more accurately than was previously possible using the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor data. MODIS data are composited over 8- or 16-day time intervals that pose unique problems for temporal Fourier analysis. Applying standard techniques to MODIS data can introduce errors of up to 30% in the estimation of the amplitudes and phases of the Fourier harmonics. Methodology/Principal Findings. We present a novel spline-based algorithm that overcomes the processing problems of composited MODIS data. The algorithm is tested on artificial data generated using randomly selected values of both amplitudes and phases, and provides an accurate estimate of the input variables under all conditions. The algorithm was then applied to produce layers that capture the seasonality in MODIS data for the period from 2001 to 2005. Conclusions/Significance. Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance, day- and night-time Land Surface Temperature (LST), Normalised Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) are presented for ecological and epidemiological applications. The finer spatial and temporal resolution, combined with the greater geolocational and spectral accuracy of the MODIS instruments, compared with previous multi-temporal data sets, mean that these data may be used with greater confidence in species' distribution modelling

    Adaptive Optics for Astronomy

    Full text link
    Adaptive Optics is a prime example of how progress in observational astronomy can be driven by technological developments. At many observatories it is now considered to be part of a standard instrumentation suite, enabling ground-based telescopes to reach the diffraction limit and thus providing spatial resolution superior to that achievable from space with current or planned satellites. In this review we consider adaptive optics from the astrophysical perspective. We show that adaptive optics has led to important advances in our understanding of a multitude of astrophysical processes, and describe how the requirements from science applications are now driving the development of the next generation of novel adaptive optics techniques.Comment: to appear in ARA&A vol 50, 201

    Theory and measure of certain image norms in SAR

    Get PDF
    The principal properties of synthetic aperture radar SAR imagery of point and distributed objects are summarized. Against this background, the response of a SAR (Synthetic Aperture Radar) to the moving surface of the sea is considered. Certain conclusions are drawn as to the mechanism of interaction between microwaves and the sea surface. Focus and speckle spectral tests may be used on selected SAR imagery for areas of the ocean. The fine structure of the sea imagery is sensitive to processor focus and adjustment. The ocean reflectivity mechanism must include point like scatterers of sufficient radar cross section to dominate the return from certain individual resolution elements. Both specular and diffuse scattering mechanisms are observed together, to varying degree. The effect is sea state dependent. Several experiments are proposed based on imaging theory that could assist in the investigation of reflectivity mechanisms

    The PLATO Dome A Site-Testing Observatory : instrumentation and first results

    Get PDF
    The PLATeau Observatory (PLATO) is an automated self-powered astrophysical observatory that was deployed to Dome A, the highest point on the Antarctic plateau, in 2008 January. PLATO consists of a suite of site-testing instruments designed to quantify the benefits of the Dome A site for astronomy, and science instruments designed to take advantage of the unique observing conditions. Instruments include CSTAR, an array of optical telescopes for transient astronomy; Gattini, an instrument to measure the optical sky brightness and cloud cover statistics; DASLE, an experiment to measure the statistics of the meteorological conditions within the near-surface layer; Pre-HEAT, a submillimeter tipping radiometer measuring the atmospheric transmission and water vapor content and performing spectral line imaging of the Galactic plane; and Snodar, an acoustic radar designed to measure turbulence within the near-surface layer. PLATO has run completely unattended and collected data throughout the winter 2008 season. Here we present a detailed description of the PLATO instrument suite and preliminary results obtained from the first season of operation

    The Subaru Coronagraphic Extreme Adaptive Optics system: enabling high-contrast imaging on solar-system scales

    Full text link
    The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose high-contrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging technologies for ELTs. It is a multi-band instrument which makes use of light from 600 to 2500nm allowing for coronagraphic direct exoplanet imaging of the inner 3 lambda/D from the stellar host. Wavefront sensing and control are key to the operation of SCExAO. A partial correction of low-order modes is provided by Subaru's facility adaptive optics system with the final correction, including high-order modes, implemented downstream by a combination of a visible pyramid wavefront sensor and a 2000-element deformable mirror. The well corrected NIR (y-K bands) wavefronts can then be injected into any of the available coronagraphs, including but not limited to the phase induced amplitude apodization and the vector vortex coronagraphs, both of which offer an inner working angle as low as 1 lambda/D. Non-common path, low-order aberrations are sensed with a coronagraphic low-order wavefront sensor in the infrared (IR). Low noise, high frame rate, NIR detectors allow for active speckle nulling and coherent differential imaging, while the HAWAII 2RG detector in the HiCIAO imager and/or the CHARIS integral field spectrograph (from mid 2016) can take deeper exposures and/or perform angular, spectral and polarimetric differential imaging. Science in the visible is provided by two interferometric modules: VAMPIRES and FIRST, which enable sub-diffraction limited imaging in the visible region with polarimetric and spectroscopic capabilities respectively. We describe the instrument in detail and present preliminary results both on-sky and in the laboratory.Comment: Accepted for publication, 20 pages, 10 figure
    • …
    corecore