27 research outputs found

    Stability of Mina v2 for Robot-Assisted Balance and Locomotion

    Get PDF
    The assessment of the risk of falling during robot-assisted locomotion is critical for gait control and operator safety, but has not yet been addressed through a systematic and quantitative approach. In this study, the balance stability of Mina v2, a recently developed powered lower-limb robotic exoskeleton, is evaluated using an algorithmic framework based on center of mass (COM)- and joint-space dynamics. The equivalent mechanical model of the combined human-exoskeleton system in the sagittal plane is established and used for balance stability analysis. The properties of the Linear Linkage Actuator, which is custom-designed for Mina v2, are analyzed to obtain mathematical models of torque-velocity limits, and are implemented as constraint functions in the optimization formulation. For given feet configurations of the robotic exoskeleton during flat ground walking, the algorithm evaluates the maximum allowable COM velocity perturbations along the fore-aft directions at each COM position of the system. The resulting velocity extrema form the contact-specific balance stability boundaries (BSBs) of the combined system in the COM state space, which represent the thresholds between balanced and unbalanced states for given contact configurations. The BSBs are obtained for the operation of Mina v2 without crutches, thus quantifying Mina v2's capability of maintaining balance through the support of the leg(s). Stability boundaries in single and double leg supports are used to analyze the robot's stability performance during flat ground walking experiments, and provide design and control implications for future development of crutch-less robotic exoskeletons

    System Identification of Bipedal Locomotion in Robots and Humans

    Get PDF
    The ability to perform a healthy walking gait can be altered in numerous cases due to gait disorder related pathologies. The latter could lead to partial or complete mobility loss, which affects the patients’ quality of life. Wearable exoskeletons and active prosthetics have been considered as a key component to remedy this mobility loss. The control of such devices knows numerous challenges that are yet to be addressed. As opposed to fixed trajectories control, real-time adaptive reference generation control is likely to provide the wearer with more intent control over the powered device. We propose a novel gait pattern generator for the control of such devices, taking advantage of the inter-joint coordination in the human gait. Our proposed method puts the user in the control loop as it maps the motion of healthy limbs to that of the affected one. To design such control strategy, it is critical to understand the dynamics behind bipedal walking. We begin by studying the simple compass gait walker. We examine the well-known Virtual Constraints method of controlling bipedal robots in the image of the compass gait. In addition, we provide both the mechanical and control design of an affordable research platform for bipedal dynamic walking. We then extend the concept of virtual constraints to human locomotion, where we investigate the accuracy of predicting lower limb joints angular position and velocity from the motion of the other limbs. Data from nine healthy subjects performing specific locomotion tasks were collected and are made available online. A successful prediction of the hip, knee, and ankle joints was achieved in different scenarios. It was also found that the motion of the cane alone has sufficient information to help predict good trajectories for the lower limb in stairs ascent. Better estimates were obtained using additional information from arm joints. We also explored the prediction of knee and ankle trajectories from the motion of the hip joints

    Assistive mobility devices focusing on smart walkers : classification and review

    Get PDF
    In an aging society it is extremely important to develop devices, which can support and aid the elderly in their daily life. This demands means and tools that extend independent living and promote improved health. Thus, the goal of this article is to review the state of the art in the robotic technology for mobility assistive devices for people with mobility disabilities. The important role that robotics can play in mobility assistive devices is presented, as well as the identification and survey of mobility assistive devices subsystems with a particular focus on the walkers technology. The advances in the walkers’ field have been enormous and have shown a great potential on helping people with mobility disabilities. Thus it is presented a review of the available literature of walkers and are discussed major advances that have been made and limitations to be overcome

    Adaptive control for wearable robots in human-centered rehabilitation tasks

    Get PDF
    Robotic rehabilitation therapies have been improving by providing the needed assistance to the patient, in a human-centered environment, and also helping the therapist to choose the necessary procedure. This thesis presents an adaptive "Assistance-as-needed" strategy which adheres to the specific needs of the patient and with the inputs from the therapist, whenever needed. The exertion of assistive and responsive behavior of the lower limb wearable robot is dedicated for the rehabilitation of incomplete spinal cord injury (SCI) patients. The main objective is to propose and evaluate an adaptive control model on a wearable robot, assisting the user and adhering to their needs, with no or less combination of external devices. The adaptation must be more interactive to understand the user needs and their volitional orders. Similarly, by using the existing muscular strength, in incomplete SCI patients, as a motivation to pursue the movement and assist them, only when needed. The adaptive behavior of the wearable robot is proposed by monitoring the interaction and movement of the user. This adaptation is achieved by modulating the stiffness of the exoskeleton in function of joint parameters, such as positions and interaction torques. These joint parameters are measured from the user independently and then used to update the new stiffness value. The adaptive algorithm performs with no need of external sensors, making it simple in terms of usage. In terms of rehabilitation, it is also desirable to be compatible with combination of assistive devices such as muscle stimulation, neural activity (BMI) and body balance (Wii), to deliver a user friendly and effective therapy. Combination of two control approaches has been employed, to improve the efficiency of the adaptive control model and was evaluated using a wearable lower limb exoskeleton device, H1. The control approaches, Hierarchical and Task based approach have been used to assist the patient as needed and simultaneously motivate the patient to pursue the therapy. Hierarchical approach facilitates combination of multiple devices to deliver an effective therapy by categorizing the control architecture in two layers, Low level and High level control. Task-based approaches engage in each task individually and allow the possibility to combine them at any point of time. It is also necessary to provide an interaction based approach to ensure the complete involvement of the user and for an effective therapy. By means of this dissertation, a task based adaptive control is proposed, in function of human-orthosis interaction, which is applied on a hierarchical control scheme. This control scheme is employed in a wearable robot, with the intention to be applied or accommodated to different pathologies, with its adaptive capabilities. The adaptive control model for gait assistance provides a comprehensive solution through a single implementation: Adaptation inside a gait cycle, continuous support through gait training and in real time. The performance of this control model has been evaluated with healthy subjects, as a preliminary study, and with paraplegic patients. Results of the healthy subjects showed a significant change in the pattern of the interaction torques, elucidating a change in the effort and adaptation to the user movement. In case of patients, the adaptation showed a significant improvement in the joint performance (flexion/extension range) and change in interaction torques. The change in interaction torques (positive to negative) reflects the active participation of the patient, which also explained the adaptive performance. The patients also reported that the movement of the exoskeleton is flexible and the walking patterns were similar to their own distinct patterns. The presented work is performed as part of the project HYPER, funded by Ministerio de Ciencia y Innovación, Spain. (CSD2009 - 00067 CONSOLIDER INGENIOLas terapias de rehabilitación robóticas han sido mejoradas gracias a la inclusión de la asistencia bajo demanda, adaptada a las variaciones de las necesidades del paciente, así como a la inclusión de la ayuda al terapeuta en la elección del procedimiento necesario. Esta tesis presenta una estrategia adaptativa de asistencia bajo demanda, la cual se ajusta a las necesidades específicas del paciente junto a las aportaciones del terapeuta siempre que sea necesario. El esfuerzo del comportamiento asistencial y receptivo del robot personal portátil para extremidades inferiores está dedicado a la rehabilitación de pacientes con lesión de la médula espinal (LME) incompleta. El objetivo principal es proponer y evaluar un modelo de control adaptativo en un robot portátil, ayudando al usuario y cumpliendo con sus necesidades, en ausencia o con reducción de dispositivos externos. La adaptación debe ser más interactiva para entender las necesidades del usuario y sus intenciones u órdenes volitivas. De modo similar, usando la fuerza muscular existente (en pacientes con LME incompleta) como motivación para lograr el movimiento y asistirles solo cuando sea necesario. El comportamiento adaptativo del robot portátil se propone mediante la monitorización de la interacción y movimiento del usuario. Esta adaptación conjunta se consigue modulando la rigidez en función de los parámetros de la articulación, tales como posiciones y pares de torsión. Dichos parámetros se miden del usuario de forma independiente y posteriormente se usan para actualizar el nuevo valor de la rigidez. El desempeño del algoritmo adaptativo no requiere de sensores externos, lo que favorece la simplicidad de su uso. Para una adecuada rehabilitación, efectiva y accesible para el usuario, es necesaria la compatibilidad con diversos mecanismos de asistencia tales como estimulación muscular, actividad neuronal y equilibrio corporal. Para mejorar la eficiencia del modelo de control adaptativo se ha empleado una combinación de dos enfoques de control, y para su evaluación se ha utilizado un exoesqueleto robótico H1. Los enfoques de control Jerárquico y de Tarea se han utilizado para ayudar al usuario según sea necesario, y al mismo tiempo motivarle para continuar el tratamiento. Enfoque jerárquico facilita la combinación de múltiples dispositivos para ofrecer un tratamiento eficaz mediante la categorización de la arquitectura de control en dos niveles : el control de bajo nivel y de alto nivel. Los enfoques basados en tareas involucran a la persona en cada tarea individual, y ofrecen la posibilidad de combinarlas en cualquier momento. También es necesario proporcionar un enfoque basado en la interacción con el usuario, para asegurar su participación y lograr así una terapia eficaz. Mediante esta tesis, proponemos un control adaptativo basado en tareas y en función de la interacción persona-ortesis, que se aplica en un esquema de control jerárquico. Este esquema de control se emplea en un robot portátil, con la intención de ser aplicado o acomodado a diferentes patologías, con sus capacidades de adaptación. El modelo de control adaptativo propuesto proporciona una solución integral a través de una única aplicación: adaptación dentro de la marcha y apoyo continúo a través de ejercicios de movilidad en tiempo real. El rendimiento del modelo se ha evaluado en sujetos sanos según un estudio preliminar, y posteriormente también en pacientes parapléjicos. Los resultados en sujetos sanos mostraron un cambio significativo en el patrón de los pares de interacción, elucidando un cambio en la energía y la adaptación al movimiento del usuario. En el caso de los pacientes, la adaptación mostró una mejora significativa en la actuación conjunta (rango de flexión / extensión) y el cambio en pares de interacción. El cambio activo en pares de interacción (positivo a negativo) refleja la participación activa del paciente, lo que también explica el comportamiento adaptativo

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Robotic exoskeleton with an assist-as-needed control strategy for gait rehabilitation after stroke

    Get PDF
    Stroke is a loss of brain function caused by a disturbance on the blood supply to the brain. The main consequence of a stroke is a serious long-term disability, and it affects millions of people around the world every year. Motor recovery after stroke is primarily based on physical therapy and the most common rehabilitation method focuses on the task specific approach. Gait is one of the most important daily life activity affected in stroke victims, leading to poor ambulatory activity. Therefore, much effort has been devoted to improve gait rehabilitation. Traditional gait therapy is mostly based on treadmill training, with patient’s body weight partially supported by a harness system. Physical therapists need to manually assist patients in the correct way to move their legs. However, this technique is usually very exhausting for therapists and, as a result, the training duration is limited by the physical conditions of the therapists themselves. Moreover, multiple therapists are required to assist a single patient on both legs, and it is very difficult to coordinate and properly control the body segments of interest. In order to help physical therapists to improve the rehabilitation process, robotic exoskeletons can come into play. Robotics exoskeletons consist of mechatronic structures attached to subject’s limbs in order to assist or enhance movements. These robotic devices have emerged as a promising approach to restore gait and improve motor function of impaired stroke victims, by applying intensive and repetitive training. However, active subject participation during the therapy is paramount to many of the potential recovery pathways and, therefore, it is an important feature of the gait training. To this end, robotics devices should not impose fixed limb trajectories while patient remains passive. These have been the main motivations for the research of this dissertation. The overall aim was to generate the necessary knowledge to design, develop and validate a novel lower limb robotic exoskeleton and an assist-as-needed therapy for gait rehabilitation in post-stroke patients. Research activities were conducted towards the development of the hardware and the control methods required to prove the concept with a clinical evaluation. The first part of the research was dedicated to design and implement a lightweight robotic exoskeleton with a comfortable embodiment to the user. It was envisioned as a completely actuated device in the sagittal plane, capable of providing the necessary torque to move the hip, knee and ankle joints through the walking process. The device, that does not extend above mid-abdomen and requires nothing to be worn over the shoulders or above the lower back, presumably renders more comfort to the user. Furthermore, the robotic exoskeleton is an autonomous device capable of overground walking, aiming to motivate and engage patients by performing gait rehabilitation in a real environment. The second research part was devoted to implement a control approach that assist the patient only when needed. This method creates a force field that guides patient’s limb in a correct trajectory. In this way, the robotic exoskeleton only applies forces when the patient deviates from the trajectory. The force field provides haptic feedback that is processed by the patient, thus leading to a continuous improvement of the motor functions. Finally, research was conducted to evaluate the robotic exoskeleton and its control approach in a clinical study with post-stroke patients. This study aimed to be a proof-of-concept of all design and implementation applied to a real clinical rehabilitation scenario. Several aspects were evaluated: the robotic exoskeleton control performance, patients’ attitudes and motivation towards the use of the device, patients’ safety and tolerance to the intensive robotic training and the impact of the robotic training on the walking function of the patients. Results have shown that the device is safe, easy to use and have positive impact on walking functions. The patients tolerated the walking therapy very well and were motivated by training with the device. These results motivate further research on overground walking therapy for stroke rehabilitation with the robotic exoskeleton. The work presented in this dissertation comprises all the way from the research to implementation and evaluation of a final device. The technology resulting from the work presented here has been transferred to a spin-o↵ company, which is now commercializing the device in different countries as a research tool to be used in clinical studies.Un accidente cerebrovascular es una pérdida de la función cerebral causada por una perturbación en el suministro sanguíneo al cerebro. La principal consecuencia de esta enfermedad es una grave discapacidad a largo plazo, que afecta a millones de personas en todo el mundo a cada año. La recuperación motora después de un accidente cerebrovascular se basa principalmente en la terapia física, y el método de rehabilitación más frecuente se centra en un entrenamiento específico. La marcha es una de las más importantes actividades de la vida diaria afectada por un accidente cerebrovascular, conduciendo a una capacidad ambulatoria deficiente. Debido a eso, mucho esfuerzo se ha dedicado a la rehabilitación de la marcha. La terapia tradicional de la marcha se basa principalmente en el entrenamiento en cinta rodante, con descarga de peso parcial usando un sistema de arnés. Los fisioterapeutas ayudan manualmente a los pacientes a mover sus piernas en la forma correcta. Sin embargo, esta técnica suele ser muy extenuante para los terapeutas, limitando la duración de la terapia por las condiciones físicas de estos. Además, se requieren múltiples terapeutas para asistir a un solo paciente en ambas piernas, siendo muy difícil de coordinar y controlar adecuadamente los segmentos corporales de interés. Con el fin de ayudar a los terapeutas físicos a mejorar el proceso de rehabilitación, los exosqueletos robóticos pueden ser muy útiles. Los exoesqueletos robóticos consisten en estructuras mecatrónicas conectadas a las extremidades del usuario, con el fin de asistir sus movimientos. Estos dispositivos robóticos han surgido como una forma prometedora de restaurar la marcha y mejorar la función motora en víctimas de accidentes cerebrovasculares, aplicando un entrenamiento intensivo y repetitivo. Sin embargo, la participación activa del paciente en la terapia es primordial para muchas de las posibles vías de recuperación y, por lo tanto, es una característica importante del entrenamiento de la marcha. Para este fin, los dispositivos robóticos no deben imponer trayectorias fijas en las extremidades del paciente mientras este permanece pasivo. Estos desafíos en los procesos de rehabilitación han sido la principal motivación para la investigación en esta tesis doctoral. El objetivo principal es generar los conocimientos necesarios para diseñar, desarrollar y validar un exoesqueleto robótico y una terapia de asistencia bajo demanda para la rehabilitación de la marcha en pacientes tras un accidente cerebrovascular. Actividades de investigación fueron llevadas a cabo para el desarrollo del hardware y de los métodos de control necesarios para una prueba de concepto mediante una evaluación clínica. La primera parte de la investigación fue dedicada a diseñar e implementar un exoesqueleto robótico ligero y cómodo para el usuario. Fue concebido un dispositivo completamente actuado en el plano sagital, capaz de proporcionar el par necesario para mover las articulaciones de la cadera, rodilla y tobillo durante la marcha. El dispositivo no se extiende por encima de mitad del abdomen y no requiere llevar nada sobre los hombros o en el tronco, proporcionando más comodidad al usuario. Además, el exoesqueleto robótico es un dispositivo autónomo capaz de asistir marcha ambulatoria, con el objetivo de motivar a los pacientes por medio de rehabilitación en un entorno real. La segunda parte de la investigación fue dedicada a implementar una estrategia de control para ayudar al paciente bajo demanda. El método crea un campo de fuerzas que guía la extremidad del paciente en la trayectoria correcta. De esta manera, el exoesqueleto robótico sólo aplica fuerzas cuando el paciente se desvía de la trayectoria. El campo de fuerza proporciona retroalimentación háptica que es procesada por el paciente, lo que conduce a una mejora continua de las funciones motoras. Por último, fue llevada a cabo una investigación para evaluar el exoesqueleto robótico y su estrategia de control en un estudio clínico con pacientes que han sufrido un accidente cerebrovascular. Este estudio fue una prueba de concepto del diseño y de la implementación del dispositivo aplicada a un escenario de rehabilitación clínica real. Se evaluaron varios aspectos: el desempeño de la estrategia de control, las actitudes y motivación de los pacientes hacia el uso del dispositivo, la seguridad del paciente y su tolerancia a la terapia robótica intensiva y el impacto de la rehabilitación en la marcha de los pacientes. Los resultados han demostrado que el dispositivo es seguro, fácil de usar y tiene un impacto positivo en la marcha. Los pacientes toleraron la terapia robótica muy bien y estuvieron motivados por el entrenamiento con el dispositivo. Estos resultados motivan a seguir la investigación con el exoesqueleto robótico aplicado a la rehabilitación de marcha en pacientes que han sufrido un accidente cerebrovascular. El trabajo presentado en esta tesis doctoral comprende todo el camino desde la investigación hasta la ejecución y evaluación de un dispositivo terminado. La tecnología resultante del trabajo que aquí se presenta ha sido transferida a una empresa spin-off, que ahora está comercializando el dispositivo en diferentes países como una herramienta de investigación para ser utilizada en estudios clínicos.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Luís Enrique Moreno Lorente.-Secretario: Juan Aranda López.-Vocal: Jose María Azorín Poved
    corecore