14,800 research outputs found

    Four-state Non-malleable Codes with Explicit Constant Rate

    Get PDF
    Non-malleable codes (NMCs), introduced by Dziembowski, Pietrzak and Wichs (ITCS 2010), generalize the classical notion of error correcting codes by providing a powerful guarantee even in scenarios where error correcting codes cannot provide any guarantee: a decoded message is either the same or completely independent of the underlying message, regardless of the number of errors introduced into the codeword. Informally, NMCs are defined with respect to a family of tampering functions FF and guarantee that any tampered codeword either decodes to the same message or to an independent message, so long as it is tampered using a function fFf \in F. Nearly all known constructions of NMCs are for the tt-split-state family, where the adversary tampers each of the tt blocks (also known as states), of a codeword, arbitrarily but independently. Cheraghchi and Guruswami (TCC 2014) obtain a Rate-1 non-malleable code for the case where t=O(n)t = O(n) with nn being the codeword length and, in (ITCS 2014), show an upper bound of 11/t1-1/t on the best achievable rate for any tt-split state NMC. For t=10t=10, Chattopadhyay and Zuckerman (FOCS 2014) achieve a constant rate construction where the constant is unknown. In summary, there is no known construction of an NMC with an explicit constant rate for any t=o(n)t= o(n), let alone one that comes close to matching Cheraghchi and Guruswami\u27s lowerbound! In this work, we construct an efficient non-malleable code in the tt-split-state model, for t=4t=4, that achieves a constant rate of 13+ζ\frac{1}{3+\zeta}, for any constant ζ>0\zeta > 0, and error 2Ω(/logc+1)2^{-\Omega(\ell / log^{c+1} \ell)}, where \ell is the length of the message and c>0c > 0 is a constant

    Non-Malleable Codes for Small-Depth Circuits

    Get PDF
    We construct efficient, unconditional non-malleable codes that are secure against tampering functions computed by small-depth circuits. For constant-depth circuits of polynomial size (i.e. AC0\mathsf{AC^0} tampering functions), our codes have codeword length n=k1+o(1)n = k^{1+o(1)} for a kk-bit message. This is an exponential improvement of the previous best construction due to Chattopadhyay and Li (STOC 2017), which had codeword length 2O(k)2^{O(\sqrt{k})}. Our construction remains efficient for circuit depths as large as Θ(log(n)/loglog(n))\Theta(\log(n)/\log\log(n)) (indeed, our codeword length remains nk1+ϵ)n\leq k^{1+\epsilon}), and extending our result beyond this would require separating P\mathsf{P} from NC1\mathsf{NC^1}. We obtain our codes via a new efficient non-malleable reduction from small-depth tampering to split-state tampering. A novel aspect of our work is the incorporation of techniques from unconditional derandomization into the framework of non-malleable reductions. In particular, a key ingredient in our analysis is a recent pseudorandom switching lemma of Trevisan and Xue (CCC 2013), a derandomization of the influential switching lemma from circuit complexity; the randomness-efficiency of this switching lemma translates into the rate-efficiency of our codes via our non-malleable reduction.Comment: 26 pages, 4 figure

    Limits to Non-Malleability

    Get PDF
    There have been many successes in constructing explicit non-malleable codes for various classes of tampering functions in recent years, and strong existential results are also known. In this work we ask the following question: When can we rule out the existence of a non-malleable code for a tampering class ?? First, we start with some classes where positive results are well-known, and show that when these classes are extended in a natural way, non-malleable codes are no longer possible. Specifically, we show that no non-malleable codes exist for any of the following tampering classes: - Functions that change d/2 symbols, where d is the distance of the code; - Functions where each input symbol affects only a single output symbol; - Functions where each of the n output bits is a function of n-log n input bits. Furthermore, we rule out constructions of non-malleable codes for certain classes ? via reductions to the assumption that a distributional problem is hard for ?, that make black-box use of the tampering functions in the proof. In particular, this yields concrete obstacles for the construction of efficient codes for NC, even assuming average-case variants of P ? NC

    Two Source Extractors for Asymptotically Optimal Entropy, and (Many) More

    Full text link
    A long line of work in the past two decades or so established close connections between several different pseudorandom objects and applications. These connections essentially show that an asymptotically optimal construction of one central object will lead to asymptotically optimal solutions to all the others. However, despite considerable effort, previous works can get close but still lack one final step to achieve truly asymptotically optimal constructions. In this paper we provide the last missing link, thus simultaneously achieving explicit, asymptotically optimal constructions and solutions for various well studied extractors and applications, that have been the subjects of long lines of research. Our results include: Asymptotically optimal seeded non-malleable extractors, which in turn give two source extractors for asymptotically optimal min-entropy of O(logn)O(\log n), explicit constructions of KK-Ramsey graphs on NN vertices with K=logO(1)NK=\log^{O(1)} N, and truly optimal privacy amplification protocols with an active adversary. Two source non-malleable extractors and affine non-malleable extractors for some linear min-entropy with exponentially small error, which in turn give the first explicit construction of non-malleable codes against 22-split state tampering and affine tampering with constant rate and \emph{exponentially} small error. Explicit extractors for affine sources, sumset sources, interleaved sources, and small space sources that achieve asymptotically optimal min-entropy of O(logn)O(\log n) or 2s+O(logn)2s+O(\log n) (for space ss sources). An explicit function that requires strongly linear read once branching programs of size 2nO(logn)2^{n-O(\log n)}, which is optimal up to the constant in O()O(\cdot). Previously, even for standard read once branching programs, the best known size lower bound for an explicit function is 2nO(log2n)2^{n-O(\log^2 n)}.Comment: Fixed some minor error

    Non-malleable coding against bit-wise and split-state tampering

    Get PDF
    Non-malleable coding, introduced by Dziembowski et al. (ICS 2010), aims for protecting the integrity of information against tampering attacks in situations where error detection is impossible. Intuitively, information encoded by a non-malleable code either decodes to the original message or, in presence of any tampering, to an unrelated message. Non-malleable coding is possible against any class of adversaries of bounded size. In particular, Dziembowski et al. show that such codes exist and may achieve positive rates for any class of tampering functions of size at most (Formula presented.), for any constant (Formula presented.). However, this result is existential and has thus attracted a great deal of subsequent research on explicit constructions of non-malleable codes against natural classes of adversaries. In this work, we consider constructions of coding schemes against two well-studied classes of tampering functions; namely, bit-wise tampering functions (where the adversary tampers each bit of the encoding independently) and the much more general class of split-state adversaries (where two independent adversaries arbitrarily tamper each half of the encoded sequence). We obtain the following results for these models. (1) For bit-tampering adversaries, we obtain explicit and efficiently encodable and decodable non-malleable codes of length n achieving rate (Formula presented.) and error (also known as “exact security”) (Formula presented.). Alternatively, it is possible to improve the error to (Formula presented.) at the cost of making the construction Monte Carlo with success probability (Formula presented.) (while still allowing a compact description of the code). Previously, the best known construction of bit-tampering coding schemes was due to Dziembowski et al. (ICS 2010), which is a Monte Carlo construction achieving rate close to .1887. (2) We initiate the study of seedless non-malleable extractors as a natural variation of the notion of non-malleable extractors introduced by Dodis and Wichs (STOC 2009). We show that construction of non-malleable codes for the split-state model reduces to construction of non-malleable two-source extractors. We prove a general result on existence of seedless non-malleable extractors, which implies that codes obtained from our reduction can achieve rates arbitrarily close to 1 / 5 and exponentially small error. In a separate recent work, the authors show that the optimal rate in this model is 1 / 2. Currently, the best known explicit construction of split-state coding schemes is due to Aggarwal, Dodis and Lovett (ECCC TR13-081) which only achieves vanishing (polynomially small) rate

    Non-Malleable Extractors and Non-Malleable Codes: Partially Optimal Constructions

    Get PDF
    The recent line of study on randomness extractors has been a great success, resulting in exciting new techniques, new connections, and breakthroughs to long standing open problems in several seemingly different topics. These include seeded non-malleable extractors, privacy amplification protocols with an active adversary, independent source extractors (and explicit Ramsey graphs), and non-malleable codes in the split state model. Previously, the best constructions are given in [Xin Li, 2017]: seeded non-malleable extractors with seed length and entropy requirement O(log n+log(1/epsilon)log log (1/epsilon)) for error epsilon; two-round privacy amplification protocols with optimal entropy loss for security parameter up to Omega(k/log k), where k is the entropy of the shared weak source; two-source extractors for entropy O(log n log log n); and non-malleable codes in the 2-split state model with rate Omega(1/log n). However, in all cases there is still a gap to optimum and the motivation to close this gap remains strong. In this paper, we introduce a set of new techniques to further push the frontier in the above questions. Our techniques lead to improvements in all of the above questions, and in several cases partially optimal constructions. This is in contrast to all previous work, which only obtain close to optimal constructions. Specifically, we obtain: 1) A seeded non-malleable extractor with seed length O(log n)+log^{1+o(1)}(1/epsilon) and entropy requirement O(log log n+log(1/epsilon)), where the entropy requirement is asymptotically optimal by a recent result of Gur and Shinkar [Tom Gur and Igor Shinkar, 2018]; 2) A two-round privacy amplification protocol with optimal entropy loss for security parameter up to Omega(k), which solves the privacy amplification problem completely; 3) A two-source extractor for entropy O((log n log log n)/(log log log n)), which also gives an explicit Ramsey graph on N vertices with no clique or independent set of size (log N)^{O((log log log N)/(log log log log N))}; and 4) The first explicit non-malleable code in the 2-split state model with constant rate, which has been a major goal in the study of non-malleable codes for quite some time. One small caveat is that the error of this code is only (an arbitrarily small) constant, but we can also achieve negligible error with rate Omega(log log log n/log log n), which already improves the rate in [Xin Li, 2017] exponentially. We believe our new techniques can help to eventually obtain completely optimal constructions in the above questions, and may have applications in other settings

    Quantum secure non-malleable randomness encoder and its applications

    Full text link
    "Non-Malleable Randomness Encoder"(NMRE) was introduced by Kanukurthi, Obbattu, and Sekar~[KOS18] as a useful cryptographic primitive helpful in the construction of non-malleable codes. To the best of our knowledge, their construction is not known to be quantum secure. We provide a construction of a first rate-1/21/2, 22-split, quantum secure NMRE and use this in a black-box manner, to construct for the first time the following: 1) rate 1/111/11, 33-split, quantum non-malleable code, 2) rate 1/31/3, 33-split, quantum secure non-malleable code, 3) rate 1/51/5, 22-split, average case quantum secure non-malleable code.Comment: arXiv admin note: text overlap with arXiv:2308.0646

    Algebra in Computational Complexity

    Get PDF
    At its core, much of Computational Complexity is concerned with combinatorial objects and structures. But it has often proven true that the best way to prove things about these combinatorial objects is by establishing a connection to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The Razborov-Smolensky polynomial-approximation method for proving constant-depth circuit lower bounds, the PCP characterization of NP, and the Agrawal-Kayal-Saxena polynomial-time primality test are some of the most prominent examples. The algebraic theme continues in some of the most exciting recent progress in computational complexity. There have been significant recent advances in algebraic circuit lower bounds, and the so-called "chasm at depth 4" suggests that the restricted models now being considered are not so far from ones that would lead to a general result. There have been similar successes concerning the related problems of polynomial identity testing and circuit reconstruction in the algebraic model, and these are tied to central questions regarding the power of randomness in computation. Representation theory has emerged as an important tool in three separate lines of work: the "Geometric Complexity Theory" approach to P vs. NP and circuit lower bounds, the effort to resolve the complexity of matrix multiplication, and a framework for constructing locally testable codes. Coding theory has seen several algebraic innovations in recent years, including multiplicity codes, and new lower bounds. This seminar brought together researchers who are using a diverse array of algebraic methods in a variety of settings. It plays an important role in educating a diverse community about the latest new techniques, spurring further progress
    corecore