794 research outputs found

    Immunity-Based Framework for Autonomous Flight in GPS-Challenged Environment

    Get PDF
    In this research, the artificial immune system (AIS) paradigm is used for the development of a conceptual framework for autonomous flight when vehicle position and velocity are not available from direct sources such as the global navigation satellite systems or external landmarks and systems. The AIS is expected to provide corrections of velocity and position estimations that are only based on the outputs of onboard inertial measurement units (IMU). The AIS comprises sets of artificial memory cells that simulate the function of memory T- and B-cells in the biological immune system of vertebrates. The innate immune system uses information about invading antigens and needed antibodies. This information is encoded and sorted by T- and B-cells. The immune system has an adaptive component that can accelerate and intensify the immune response upon subsequent infection with the same antigen. The artificial memory cells attempt to mimic these characteristics for estimation error compensation and are constructed under normal conditions when all sensor systems function accurately, including those providing vehicle position and velocity information. The artificial memory cells consist of two main components: a collection of instantaneous measurements of relevant vehicle features representing the antigen and a set of instantaneous estimation errors or correction features, representing the antibodies. The antigen characterizes the dynamics of the system and is assumed to be correlated with the required corrections of position and velocity estimation or antibodies. When the navigation source is unavailable, the currently measured vehicle features from the onboard sensors are matched against the AIS antigens and the corresponding corrections are extracted and used to adjust the position and velocity estimation algorithm and provide the corrected estimation as actual measurement feedback to the vehicle’s control system. The proposed framework is implemented and tested through simulation in two versions: with corrections applied to the output or the input of the estimation scheme. For both approaches, the vehicle feature or antigen sets include increments of body axes components of acceleration and angular rate. The correction feature or antibody sets include vehicle position and velocity and vehicle acceleration adjustments, respectively. The impact on the performance of the proposed methodology produced by essential elements such as path generation method, matching algorithm, feature set, and the IMU grade was investigated. The findings demonstrated that in all cases, the proposed methodology could significantly reduce the accumulation of dead reckoning errors and can become a viable solution in situations where direct accurate measurements and other sources of information are not available. The functionality of the proposed methodology and its promising outcomes were successfully illustrated using the West Virginia University unmanned aerial system simulation environment

    An Overview of Evolutionary Algorithms toward Spacecraft Attitude Control

    Get PDF
    Evolutionary algorithms can be used to solve interesting problems for aeronautical and astronautical applications, and it is a must to review the fundamentals of the most common evolutionary algorithms being used for those applications. Genetic algorithms, particle swarm optimization, firefly algorithm, ant colony optimization, artificial bee colony optimization, and the cuckoo search algorithm are presented and discussed with an emphasis on astronautical applications. In summary, the genetic algorithm and its variants can be used for a large parameter space but is more efficient in global optimization using a smaller chromosome size such that the number of parameters being optimized simultaneously is less than 1000. It is found that PID controller parameters, nonlinear parameter identification, and trajectory optimization are applications ripe for the genetic algorithm. Ant colony optimization and artificial bee colony optimization are optimization routines more suited for combinatorics, such as with trajectory optimization, path planning, scheduling, and spacecraft load bearing. Particle swarm optimization, firefly algorithm, and cuckoo search algorithms are best suited for large parameter spaces due to the decrease in computation need and function calls when compared to the genetic algorithm family of optimizers. Key areas of investigation for these social evolution algorithms are in spacecraft trajectory planning and in parameter identification

    A review of optimization techniques in spacecraft flight trajectory design

    Get PDF
    For most atmospheric or exo-atmospheric spacecraft flight scenarios, a well-designed trajectory is usually a key for stable flight and for improved guidance and control of the vehicle. Although extensive research work has been carried out on the design of spacecraft trajectories for different mission profiles and many effective tools were successfully developed for optimizing the flight path, it is only in the recent five years that there has been a growing interest in planning the flight trajectories with the consideration of multiple mission objectives and various model errors/uncertainties. It is worth noting that in many practical spacecraft guidance, navigation and control systems, multiple performance indices and different types of uncertainties must frequently be considered during the path planning phase. As a result, these requirements bring the development of multi-objective spacecraft trajectory optimization methods as well as stochastic spacecraft trajectory optimization algorithms. This paper aims to broadly review the state-of-the-art development in numerical multi-objective trajectory optimization algorithms and stochastic trajectory planning techniques for spacecraft flight operations. A brief description of the mathematical formulation of the problem is firstly introduced. Following that, various optimization methods that can be effective for solving spacecraft trajectory planning problems are reviewed, including the gradient-based methods, the convexification-based methods, and the evolutionary/metaheuristic methods. The multi-objective spacecraft trajectory optimization formulation, together with different class of multi-objective optimization algorithms, is then overviewed. The key features such as the advantages and disadvantages of these recently-developed multi-objective techniques are summarised. Moreover, attentions are given to extend the original deterministic problem to a stochastic version. Some robust optimization strategies are also outlined to deal with the stochastic trajectory planning formulation. In addition, a special focus will be given on the recent applications of the optimized trajectory. Finally, some conclusions are drawn and future research on the development of multi-objective and stochastic trajectory optimization techniques is discussed

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    Motion Planning

    Get PDF
    Motion planning is a fundamental function in robotics and numerous intelligent machines. The global concept of planning involves multiple capabilities, such as path generation, dynamic planning, optimization, tracking, and control. This book has organized different planning topics into three general perspectives that are classified by the type of robotic applications. The chapters are a selection of recent developments in a) planning and tracking methods for unmanned aerial vehicles, b) heuristically based methods for navigation planning and routes optimization, and c) control techniques developed for path planning of autonomous wheeled platforms

    4D commercial trajectory optimization for fuel saving and environmemtal impact reduction

    Get PDF
    The main purpose of the thesis is to optimize commercial aircraft 4D trajectories to improve flight efficiency and reduce fuel consumption and environmental impact caused by airliners. The Trajectory Optimization Problem (TOP) technique can be used to accomplish this goal. The formulation of the aircraft TOP involves the mathematical model of the system (i.e., dynamics model, performance model, and emissions model of the aircraft), Performance Index (PI), and boundary and path constraints of the system. Typically, the TOP is solved by a wide range of numerical approaches. They can be classified into three basic classes of numerical methods: indirect methods, direct methods, and dynamic programming. In this thesis, several instances of problems were considered to optimize commercial aircraft trajectories. Firstly, the problem of optimal trajectory generation from predefined 4D waypoint networks was considered. A single source shortest path algorithm (Dijkstra’s algorithm) was applied to generate the optimal aircraft trajectories that minimize aircraft fuel burn and total trip time between the initial and final waypoint in the networks. Dijkstra’s Algorithm (DA) successfully found the path (trajectory) with the lowest cost (i.e., fuel consumption, and total trip time) from the predefined 4D waypoint networks. Next, the problem of generating minimum length optimal trajectory along a set of predefined 4D waypoints was considered. A cubic spline parameterization was used to solve the TOP. The state vector, its time derivative, and control vector are parameterized using Cubic Spline Interpolation (CSI). Consequently, the objective function and constraints are expressed as functions of the value of state and control at the temporal nodes, this representation transforms the TOP into a Nonlinear Programming (NLP) problem, which is then solved numerically using a well-established NLP solver. The proposed method generated a smooth 4D optimal trajectory with very accurate results. Following, the problem considers generating optimal trajectories between two 4D waypoints. Dynamic Programming (DP) a well-established numerical method was considered to solve this problem. The traditional DP bears some shortcomings that prevent its use in many practical real-time implementations. This thesis proposes a Modified Dynamic Programming (MDP) approach which reduces the computational effort and overcomes the drawbacks of the traditional DP. The proposed MDP approach was successfully implemented to generate optimal trajectories that minimize aircraft fuel consumption and emissions in several case studies, the obtained optimal trajectories are then compared with the corresponding reference commercial flight trajectory for the same route in order to quantify the potential benefit of reduction of aircraft fuel consumption and emissions. The numerical examples demonstrate that the MDP can successfully generate fuel and emissions optimal trajectory with little computational effort, which implies it can also be applied to online trajectory generation. Finally, the problem of predicting the fuel flow rate from actual flight data or manual data was considered. The Radial Basis Function (RBF) neural network was applied to predict the fuel flow rate in the climb, cruise, and descent phases of flight. In the RBF neural network, the true airspeed and flight altitude were taken as the input parameters and the fuel flow rate as the output parameter. The RBF neural network produced a highly accurate fuel flow rate model with a high value of coefficients of determination, together with the low relative approximation errors. Later on, the resulted fuel flow rate model was used to solve a 4D TOP by optimizing aircraft green cost between two 4D waypoints.O principal objetivo desta tese é otimizar as trajetórias em 4D de aeronaves comerciais, de forma a melhorar a eficiência de voo e reduzir o consumo de combustível e o impacto ambiental causado pelos aviões. A técnica de otimização de trajetória pode ser utilizada para atingir este objetivo. A formulação do problema de otimização de trajetória de uma aeronave envolve o modelo matemático do sistema (isto é, modelo de dinâmica, modelo de desempenho, e modelo de emissões de aeronaves), a função objetiva e os limites e restrições do sistema. Normalmente, o problema de otimização de trajetória é solucionado por uma ampla variedade de abordagens numéricas, que podem ser classificadas em três classes básicas de métodos numéricos: métodos indiretos, métodos diretos e programação dinâmica. Nesta tese, foram consideradas várias instâncias de problemas para otimizar trajetórias de aeronaves comerciais. Em primeiro lugar, foi considerado um problema de geração de trajetória ótima em 4D a partir de redes de waypoints predefinidas. Para tal, foi aplicado um algoritmo de single source shortest path (neste caso, algoritmo de Dijkstra), de forma a gerar trajetórias ótimas que minimizem o consumo de combustível da aeronave e o seu tempo total de viagem. O algoritmo de Dijkstra encontrou com sucesso a trajetória com menor custo, isto é, a trajetória de menor consumo de combustível e menor tempo total de viagem, a partir da rede predefinida de waypoints. Em seguida, foi considerado o problema de gerar uma trajetória ótima em 4D de comprimento mínimo ao longo de um conjunto de waypoints predefinidos. Para tal, foi utilizada uma parametrização da spline cúbica. O vetor de estado, a sua derivada e o vetor de controlo são parametrizados utilizando a interpolação cúbica da spline. Consequentemente, a função objetivo e as restrições são expressas como funções do valor de estado e controlo nos nós temporais. Esta representação transforma o problema de otimização de trajetória em um problema de programação não-linear, que por sua vez, é resolvido numericamente por um solucionador já bem estabelecido de programação não-linear. O método proposto gerou uma trajetória ótima em 4D com resultados precisos. Posteriormente, considerou-se o problema de geração de trajetórias ótimas em 4D entre dois waypoints. Para solucionar este problema foi utilizado a programação dinâmica que é um método numérico já bem estabelecido. A programação dinâmica apresenta algumas deficiências que impedem o seu uso em muitas aplicações práticas de tempo-real. Por isso, esta tese propõe uma abordagem de programação dinâmica modificada que reduz o esforço computacional e supera as desvantagens do Programação Dinâmica tradicional. A abordagem programação dinâmica modificada proposta, foi implementada com sucesso em vários casos de estudo, em que foram geradas trajetórias ótimas que minimizam o consumo de combustível da aeronave e as suas emissões. Estas trajetórias são, posteriormente, comparadas com a trajetória de voo comercial de referência, para quantificar a potencial redução do consumo de combustível da aeronave e das suas emissões. Os exemplos numéricos demonstram que a programação dinâmica modificada pode gerar com sucesso e com pouco esforço computacional trajetórias ótimas para o combustível e as emissões, o que sugere que este método pode ser aplicado em situações online, isto é, geração de trajetórias online. Por fim, foi considerado o problema de previsão da taxa temporal de consumo de combustível (FF) a partir de dados de voo reais. A rede neural da função de base radial (RBF) foi aplicada para prever a essa mesma taxa temporal nas fases de voo: subida, cruzeiro e descida. Na aplicação da rede neural RBF, a velocidade real e a altitude de voo foram consideradas como parâmetros de entrada e a FF foi considerada como parâmetro de saída. A rede neural RBF foi capaz de produzir um modelo adequado para estimar corretamente essa taxa temporal, com um elevado valor de coeficientes de determinação, juntamente com baixos valores nos erros relativos de aproximação. Posteriormente, este modelo de FF foi utilizado para resolver o problema de otimização de trajetórias em 4D, em que o custo total entre dois waypoints foi otimizado

    AR.Drone UAV control parameters tuning based on particle swarm optimization algorithm

    Get PDF
    In this paper, a proposed particle swarm optimization called multi-objective particle swarm optimization (MOPSO) with an accelerated update methodology is employed to tune Proportional-Integral-Derivative (PID) controller for an AR.Drone quadrotor. The proposed approach is to modify the velocity formula of the general PSO systems in order for improving the searching efficiency and actual execution time. Three PID control parameters, i.e., the proportional gain K-p, integral gain K-i and derivative gain K-d are required to form a parameter vector which is considered as a particle of PSO. To derive the optimal PID parameters for the Ar.Drone, the modified update method is employed to move the positions of all particles in the population. In the meanwhile, multi-objective functions defined for PID controller optimization problems are minimized. The results verify that the proposed MOPSO is able to perform appropriately in Ar.Drone control system
    • …
    corecore