96 research outputs found

    Circular Nonlinear Subdivision Schemes for Curve Design

    Get PDF
    Two new families of nonlinear 3-point subdivision schemes for curve design are introduced. The first family is ternary interpolatory and the second family is binary approximation. All these new schemes are circular-invariant, meaning that new vertices are generated from local circles formed by three consecutive old vertices. As consequences of the nonlinear schemes, two new families of linear subdivision schemes for curve design are established. The 3-point linear binary schemes, which are corner-cutting depending on the choices of the tension parameter, are natural extensions of the Lane-Riesenfeld schemes. The four families of both nonlinear and linear subdivision schemes are implemented extensively by a variety of examples

    Recursive subdivision algorithms for curve and surface design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.In this thesis, the author studies recursIve subdivision algorithms for curves and surfaces. Several subdivision algorithms are constructed and investigated. Some graphic examples are also presented. Inspired by the Chaikin's algorithm and the Catmull-Clark's algorithm, some non-uniform schemes, the non-uniform corner cutting scheme and the recursive subdivision algorithm for non-uniform B-spline curves, are constructed and analysed. The adapted parametrization is introduced to analyse these non-uniform algorithms. In order to solve the surface interpolation problem, the Dyn-Gregory-Levin's 4-point interpolatory scheme is generalized to surfaces and the 10-point interpolatory subdivision scheme for surfaces is formulated. The so-called Butterfly Scheme, which was firstly introduced by Dyn, Gregory Levin in 1988, is just a special case of the scheme. By studying the Cross-Differences of Directional Divided Differences, a matrix approach for analysing uniform subdivision algorithms for surfaces is established and the convergence of the 10-point scheme over both uniform and non-uniform triangular networks is studied. Another algorithm, the subdivision algorithm for uniform bi-quartic B-spline surfaces over arbitrary topology is introduced and investigated. This algorithm is a generalization of Doo-Sabin's and Catmull-Clark's algorithms. It produces uniform Bi-quartic B-spline patches over uniform data. By studying the local subdivision matrix, which is a circulant, the tangent plane and curvature properties of the limit surfaces at the so-called Extraordinary Points are studied in detail.The Chinese Educational Commission and The British Council (SBFSS/1987

    A New Four Point Circular-Invariant Corner-Cutting Subdivision for Curve Design

    Get PDF
    A 4-point nonlinear corner-cutting subdivision scheme is established. It is induced from a special C-shaped biarc circular spline structure. The scheme is circular-invariant and can be effectively applied to 2-dimensional (2D) data sets that are locally convex. The scheme is also extended adaptively to non-convex data. Explicit examples are demonstrated

    Convexity preserving interpolatory subdivision with conic precision

    Full text link
    The paper is concerned with the problem of shape preserving interpolatory subdivision. For arbitrarily spaced, planar input data an efficient non-linear subdivision algorithm is presented that results in G1G^1 limit curves, reproduces conic sections and respects the convexity properties of the initial data. Significant numerical examples illustrate the effectiveness of the proposed method

    Non-uniform interpolatory subdivision schemes with improved smoothness

    Get PDF
    Subdivision schemes are used to generate smooth curves or surfaces by iteratively refining an initial control polygon or mesh. We focus on univariate, linear, binary subdivision schemes, where the vertices of the refined polygon are computed as linear combinations of the current neighbouring vertices. In the classical stationary setting, there are just two such subdivision rules, which are used throughout all subdivision steps to construct the new vertices with even and odd indices, respectively. These schemes are well understood and many tools have been developed for deriving their properties, including the smoothness of the limit curves. For non-stationary schemes, the subdivision rules are not fixed and can be different in each subdivision step. Non-uniform schemes are even more general, as they allow the subdivision rules to be different for every new vertex that is generated by the scheme. The properties of non-stationary and non-uniform schemes are usually derived by relating the scheme to a corresponding stationary scheme and then exploiting the fact that the properties of the stationary scheme carry over under certain proximity conditions. In particular, this approach can be used to show that the limit curves of a non-stationary or non-uniform scheme are as smooth as those of a corresponding stationary scheme. In this paper we show that non-uniform subdivision schemes have the potential to generate limit curves that are smoother than those of stationary schemes with the same support size of the subdivision rule. For that, we derive interpolatory 2-point and 4-point schemes that generate C-1 and C-2 limit curves, respectively. These values of smoothness exceed the smoothness of classical interpolating schemes with the same support size by one. (C) 2022 The Author(s). Published by Elsevier B.V

    Polynomial cubic splines with tension properties

    Get PDF
    In this paper we present a new class of spline functions with tension properties. These splines are composed by polynomial cubic pieces and therefore are conformal to the standard, NURBS based CAD/CAM systems

    A UNIQUE COMBINATION OF MASK IN BINARY FOUR-POINT SUBDIVISION SCHEME

    Get PDF
    A unique binary four-point approximating subdivision scheme has been developed in which one part of binary formula have stationary mask and other part have the non-stationary mask. The resulting curves have the smoothness of C3 continuous for the wider range of shape control parameter. The role of the parameter has been depicted using the square form of discrete control points

    Mixed honeycomb pushing refinement

    Get PDF
    We generalize the honeycomb scheme, dualize it and combine both the primal and the dual scheme into self-dual subdivision schemes for convex polyhedra which generate surfaces without line segments different from the honeycomb scheme, which generates surfaces having line and even planar segments
    • …
    corecore