691 research outputs found

    LQR and SMC stabilization of a new unmanned aerial vehicle

    Get PDF
    We present our ongoing work on the development of a new quadrotor aerial vehicle which has a tilt-wing mechanism. The vehicle is capable of take-off/landing in vertical flight mode (VTOL) and flying over long distances in horizontal flight mode. Full dynamic model of the vehicle is derived using Newton-Euler formulation. Linear and nonlinear controllers for the stabilization of attitude of the vehicle and control of its altitude have been designed and implemented via simulations. In particular, an LQR controller has been shown to be quite effective in the vertical flight mode for all possible yaw angles. A sliding mode controller (SMC) with recursive nature has also been proposed to stabilize the vehicle’s attitude and altitude. Simulation results show that proposed controllers provide satisfactory performance in achieving desired maneuvers

    Mathematical modeling and vertical flight control of a tilt-wing UAV

    Get PDF
    This paper presents a mathematical model and vertical flight control algorithms for a new tilt-wing unmanned aerial vehicle (UAV). The vehicle is capable of vertical take-off and landing (VTOL). Due to its tilt-wing structure, it can also fly horizontally. The mathematical model of the vehicle is obtained using Newton-Euler formulation. A gravity compensated PID controller is designed for altitude control, and three PID controllers are designed for attitude stabilization of the vehicle. Performances of these controllers are found to be quite satisfactory as demonstrated by indoor and outdoor flight experiments
    corecore