20,367 research outputs found

    Sketchy rendering for information visualization

    Get PDF
    We present and evaluate a framework for constructing sketchy style information visualizations that mimic data graphics drawn by hand. We provide an alternative renderer for the Processing graphics environment that redefines core drawing primitives including line, polygon and ellipse rendering. These primitives allow higher-level graphical features such as bar charts, line charts, treemaps and node-link diagrams to be drawn in a sketchy style with a specified degree of sketchiness. The framework is designed to be easily integrated into existing visualization implementations with minimal programming modification or design effort. We show examples of use for statistical graphics, conveying spatial imprecision and for enhancing aesthetic and narrative qualities of visual- ization. We evaluate user perception of sketchiness of areal features through a series of stimulus-response tests in order to assess users’ ability to place sketchiness on a ratio scale, and to estimate area. Results suggest relative area judgment is compromised by sketchy rendering and that its influence is dependent on the shape being rendered. They show that degree of sketchiness may be judged on an ordinal scale but that its judgement varies strongly between individuals. We evaluate higher-level impacts of sketchiness through user testing of scenarios that encourage user engagement with data visualization and willingness to critique visualization de- sign. Results suggest that where a visualization is clearly sketchy, engagement may be increased and that attitudes to participating in visualization annotation are more positive. The results of our work have implications for effective information visualization design that go beyond the traditional role of sketching as a tool for prototyping or its use for an indication of general uncertainty

    Multimodal virtual reality versus printed medium in visualization for blind people

    Get PDF
    In this paper, we describe a study comparing the strengths of a multimodal Virtual Reality (VR) interface against traditional tactile diagrams in conveying information to visually impaired and blind people. The multimodal VR interface consists of a force feedback device (SensAble PHANTOM), synthesized speech and non-speech audio. Potential advantages of the VR technology are well known however its real usability in comparison with the conventional paper-based medium is seldom investigated. We have addressed this issue in our evaluation. The experimental results show benefits from using the multimodal approach in terms of more accurate information about the graphs obtained by users

    When seeing is more than looking:Intentional gaze modulates object desirability

    Get PDF
    Objects in the environment have a perceived value that can be changed through social influence. A subtle way to influence object evaluation is through eye gaze: Objects looked at by others are perceived as more likable than objects that are not looked at. In 3 experiments, we directly tested the hypothesis that this liking effect depends on the processing of the intentional relation between other's eye gaze and the object being looked at. To this end, we used a novel paradigm in which participants observed a face looking left or right behind an opaque barrier. Under all tested conditions, we found a gaze cueing effect on attention: Looked-at objects were categorized faster than looked-away objects. In contrast, observed gaze only led to a boost in affective evaluation for the target object when observers had the impression that the face could see the object behind the barrier, but not when observers had the impression that the face could not see the object. These findings indicate that observers make a sophisticated use of social gaze cues in the affective evaluation of objects: Objects looked at by others are liked more than objects looked away but only when others can see the objects

    Design Characterization for Black-and-White Textures in Visualization

    Full text link
    We investigate the use of 2D black-and-white textures for the visualization of categorical data and contribute a summary of texture attributes, and the results of three experiments that elicited design strategies as well as aesthetic and effectiveness measures. Black-and-white textures are useful, for instance, as a visual channel for categorical data on low-color displays, in 2D/3D print, to achieve the aesthetic of historic visualizations, or to retain the color hue channel for other visual mappings. We specifically study how to use what we call geometric and iconic textures. Geometric textures use patterns of repeated abstract geometric shapes, while iconic textures use repeated icons that may stand for data categories. We parameterized both types of textures and developed a tool for designers to create textures on simple charts by adjusting texture parameters. 30 visualization experts used our tool and designed 66 textured bar charts, pie charts, and maps. We then had 150 participants rate these designs for aesthetics. Finally, with the top-rated geometric and iconic textures, our perceptual assessment experiment with 150 participants revealed that textured charts perform about equally well as non-textured charts, and that there are some differences depending on the type of chart
    • …
    corecore