592 research outputs found

    Limits to Modularity: A Review of the Literature and Evidence from Chip Design

    Get PDF
    This working paper has been prepared as part of the East-West Center's research project on Globalization of Knowledge Work: Why is Chip Design Moving to Asia. In this paper, Dieter assesses what we know about the limits to modularity and their impact on firm organization and industry structure. He focuses on evidence form chip design, drawing on interview on 2002 and 2003 with a sample of 60 companies and 15 research institutions that are involved in chip design in the US, Taiwan, Korea, China and Malaysia. It is summarized "stylized" propositions of the modularity literature that are well-established, as well as predictions that are controversial. In addition, important limits to modularity and relevant management responses were reviewed.

    Internationalisation of Innovation: Why Chip Design Moving to Asia

    Get PDF
    This paper will appear in International Journal of Innovation Management, special issue in honor of Keith Pavitt, (Peter Augsdoerfer, Jonathan Sapsed, and James Utterback, guest editors), forthcoming. Among Keith Pavitt's many contributions to the study of innovation is the proposition that physical proximity is advantageous for innovative activities that involve highly complex technological knowledge But chip design, a process that creates the greatest value in the electronics industry and that requires highly complex knowledge, is experiencing a massive dispersion to leading Asian electronics exporting countries. To explain why chip design is moving to Asia, the paper draws on interviews with 60 companies and 15 research institutions that are doing leading-edge chip design in Asia. I demonstrate that "pull" and "policy" factors explain what attracts design to particular locations. But to get to the root causes that shift the balance in favor of geographical decentralization, I examine "push" factors, i.e. changes in design methodology ("system-on-chip design") and organization ("vertical specialization" within global design networks). The resultant increase in knowledge mobility explains why chip design - that, in Pavitt's framework is not supposed to move - is moving from the traditional centers to a few new specialized design clusters in Asia. A completely revised and updated version has been published as: " Complexity and Internationalisation of Innovation: Why is Chip Design Moving to Asia?," in International Journal of Innovation Management, special issue in honour of Keith Pavitt, Vol. 9,1: 47-73.

    Interfaces, modularity and ecosystem emergence: How DARPA modularized the semiconductor ecosystem

    Get PDF
    Scholars have identified the pivotal role that modularity plays in promoting innovation. Modularity affects industry structure by breaking up the value chain along technical interfaces, thereby allowing new entrants to specialize and innovate. Less well-understood is where modularity comes from. Firms seem to behave consistently with the theory in some settings, especially the information technology sector, but not in others, such as automobiles. Here we show how the government has a role to play in generating open interfaces needed for modularity, utilizing a case study of the semiconductor industry from 1970 to 1980. We show how the Defense Department\u27s support for this effort aligned with its mission-based interest in semiconductors. We thus contribute a new source of open standards to the modularity literature, as well as a new analytical perspective to the public research funding literature

    High Confidence Testing for Instrumentation System-on-Chip with Unknown-Good-Yield

    Get PDF
    SoCs are in general built with embedded IP cores, each of which is procured from different IP providers with no prior information on known-good-yield (KGY). In practice, partial testing is a practical choice for assuring the yield of the product under the stringent time-to-market requirements. Therefore, a proper sampling technique is a key to high confidence testing and cost effectiveness. Based on previous research, this paper proposes a novel statistical testing technique for increasingly hybrid integrated systems fabricated on a single silicon die with no a-priori empirical yield data. This problem is referred to as the unknown-good-yield (UKGY) problem. The proposed testing method, referred to as regressive testing (RegT) in this paper, exploits another way around by using parameters (referred to as assistant variables (AV)) that are employed to evaluate the yields of randomly sampled SoCs and thereby estimating the good yield by using a regression analysis method with regard to confidence intervals. Numerous simulations are conducted to demonstrate the efficiency and effectiveness of the proposed RegT in comparison to characterization-based testing methods

    Environmental-Based Characterization of SoC-Based Instrumentation Systems for Stratified Testing

    Get PDF
    This paper proposes a novel environmental-based method for evaluating the good yield rate (GYR) of systems-on-chip (SoC) during fabrication. Testing and yield evaluation at high confidence are two of the most critical issues for the success of SoC as a viable technology. The proposed method relies on different features of fabrication, which are quantified by the so-called Fabrication environmental parameters (EPs). EPs can be highly correlated to the yield, so they are analyzed using statistical methods to improve its accuracy and ultimately direct the test process to an efficient execution. The novel contributions of the proposed method are: 1) to establish an adequate theoretical foundation for understanding the fabrication process of SoCs together with an assurance of the yield at a high confidence level and 2) to ultimately provide a realistic approach to SoC testing with an accurate yield evaluation. Simulations are provided to demonstrate that the proposed method significantly improves the confidence interval of the estimated yield as compared with existing testing methodologies such as random testing (RT)

    The end of the Intel age

    Get PDF
    Thesis (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, System Design and Management Program, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 108-111).Executive Summary - The End of the Intel Era. Today, Intel is nearly synonymous with computers. In the past thirty years nearly all personal computers and the great majority of servers have shipped with a processor based on Intel's x86 architecture, of which Intel is the dominant vendor. Yet the past few years have seen a subtle yet remarkable convergence of different industry trends that very well may topple the semiconductor giant. For the past three decades, computers have largely assumed the same shape and form, regardless of their task. Laptops, desktops, and servers have all been based on the same open modular architecture established by IBM. Yet this is not likely to be the case going forward. The past decade has seen the rise of embedded computing, perhaps best epitomized by smartphones and tablet computers. Instead of the standard PC architecture where individual components can be easily exchanged, embedded devices are typically modular designs with highly integrated physical components. Independent functional units, all designed by independent companies, are integrated onto the same piece of silicon to achieve system cost and performance targets. Instead of a standard x86 processor, each device category likely has a chip optimized for its specific application. At the same time that the form of computing is changing, we are witnessing a redistribution of where computing power resides with Cloud Computing and data centers. These have ordinarily been the province of Intel based machines, but data centers have moved from using standard off-the-shelf PCs to custom designed motherboards. Again, we are seeing a shift from the modular personal computer architecture to one that is customized for the task at hand. Another concern for Intel is that the standard metrics by which products compete are in flux. For both embedded systems and data centers, the operational costs and constraints are starting to outweigh the initial outlay costs. An example is the industry shift from overall performance to system power efficiency. Intel has been a relentless driver of processor performance, and this is a significant change of focus for its R&D divisions. Of all Intel's competitors, ARM best represents the magnitude of these challenges for Intel, and is well positioned to take advantage of all these trends. Their business model of licensing their design is well suited for a world with customized architectures, and their extensive experience in low power embedded devices has given them an advantage over Intel in processor power efficiency. Intel is heavily invested in its existing vision of the market. They have always maintained a manufacturing process advantage through tremendous investments in new foundries, and have long championed the open PC modular architecture. Time will ultimately show if Intel is capable of meeting these growing challenges. Yet it is clear that in order to do so, it must make radical changes to itself. One may ask if it is even the same company that emerges.by Robert Swope Fleming.S.M.in Engineering and Managemen

    Evaluating the Repair of System-on-Chip (SoC) using Connectivity

    Get PDF
    This paper presents a new model for analyzing the repairability of reconfigurable system-on-chip (RSoC) instrumentation with the repair process. It exploits the connectivity of the interconnected cores in which unreliability factors due to both neighboring cores and the interconnect structure are taken into account. Based on the connectivity, two RSoC repair scheduling strategies, Minimum Number of Interconnections First (I-MIN) and Minimum Number of Neighboring Cores First (C-MIN), are proposed. Two other scheduling strategies, Maximum Number of Interconnections First (I-MAX) and Maximum Number of Neighboring cores First (C-MAX), are also introduced and analyzed to further explore the impact of connectivity-based repair scheduling on the overall repairability of RSoCs. Extensive parametric simulations demonstrate the efficiency of the proposed RSoC repair scheduling strategies; thereby manufacturing ultimately reliable RSoC instrumentation can be achieved

    The dynamics of games of innovation

    Get PDF
    Many executives see innovation as an unmanageable process, riddled with risks. The\ud research we conducted with the Industrial Research Institute, interviewing over 200 vicepresidents\ud of research and development and chief technical officers in many sectors around\ud the world, yields a more nuanced view. Innovation becomes manageable once managers\ud move away from normative prescriptions that view the process as uniform and recognise\ud that different rules and practices apply to different circumstances.\ud Our argument is that clusters of interdependent firms contributing to the building of a set of\ud interacting products and services tend to self-organise themselves into distinct and relatively\ud persistent “games of innovatio

    How to become the Leader of the Mobile Telecom Industry

    Get PDF
    Five main observations have been made. First, the integration is likely to continue within the mobile telecom industry. Second, the value creation process will change significantly during the next few years. Third, the operators must reinvent their position in the value chain to maintain high profitability. Fourth, ecosystem keystones will capture most of the value. Fifth, flexibility will become even more important in the future. Both horizontal and vertical integration makes the companies larger and less flexible, which in turn makes it more difficult for them to adapt to the market and the rapidly changing consumer needs. However, it is through size, integration and cooperations that a company can take a keystone advantage position. To become a so called keystone, and be able to capture most of the value created within the industry, it is important to have the customer in focus and apply co-creation and the customers-as-innovators approach. By taking in the consumer early in a product development process, the risk of losing flexibility to changing consumer needs can be reduced. Currently, it is the operators and the mobile phone brands that are competing for the position as keystone within the mobile telecom industry
    • 

    corecore