32,681 research outputs found

    Results of Evolution Supervised by Genetic Algorithms

    Full text link
    A series of results of evolution supervised by genetic algorithms with interest to agricultural and horticultural fields are reviewed. New obtained original results from the use of genetic algorithms on structure-activity relationships are reported.Comment: 6 pages, 1 Table, 2 figure

    Evolutionary computing methodology for small wind turbine supporting structures

    Get PDF
    The paper presents a comprehensive, complex, numerical, optimization methodology (computational framework) dedicated for supporting structures of small-scale wind turbines. The small wind turbine (SWT) supporting structure is one of the key components determining the cost of such a device. Therefore, the supporting structure optimization will allow cost reduction and, hence, popularization of these devices around the world. The presented methodology is based on the following: single-objective (aggregation-approach to multi-objective problem) evolutionary algorithm driven optimization, finite-element structural analyses, estimation of wind energy capture efficiency (coupled aero-servo-elastic numerical simulations), and economic evaluation (based on real meteorological data). Then, the methodology is proposed for a guy-wired mast structure of an arbitrary chosen SWT model. The optimization of chosen design features of the structure is performed and as a result the optimal solution for given assumptions is presented and scaling factor for that case is identified (total mass of the foundations). The successful use of combined numerical methods (genetic algorithms, FE method analyses, coupled aero-servo-elastic numerical simulations, pre-/post-processing scripts, and economic evaluation models) is the main novelty of this work

    Fidelity Between Unitary Operators and the Generation of Gates Robust Against Off-Resonance Perturbations

    Full text link
    We perform a functional expansion of the fidelity between two unitary matrices in order to find the necessary conditions for the robust implementation of a target gate. Comparison of these conditions with those obtained from the Magnus expansion and Dyson series shows that they are equivalent in first order. By exploiting techniques from robust design optimization, we account for issues of experimental feasibility by introducing an additional criterion to the search for control pulses. This search is accomplished by exploring the competition between the multiple objectives in the implementation of the NOT gate by means of evolutionary multi-objective optimization
    • …
    corecore