44,691 research outputs found

    A Semantic Hierarchy for Erasure Policies

    Get PDF
    We consider the problem of logical data erasure, contrasting with physical erasure in the same way that end-to-end information flow control contrasts with access control. We present a semantic hierarchy for erasure policies, using a possibilistic knowledge-based semantics to define policy satisfaction such that there is an intuitively clear upper bound on what information an erasure policy permits to be retained. Our hierarchy allows a rich class of erasure policies to be expressed, taking account of the power of the attacker, how much information may be retained, and under what conditions it may be retained. While our main aim is to specify erasure policies, the semantic framework allows quite general information-flow policies to be formulated for a variety of semantic notions of secrecy.Comment: 18 pages, ICISS 201

    A categorical foundation for structured reversible flowchart languages: Soundness and adequacy

    Full text link
    Structured reversible flowchart languages is a class of imperative reversible programming languages allowing for a simple diagrammatic representation of control flow built from a limited set of control flow structures. This class includes the reversible programming language Janus (without recursion), as well as more recently developed reversible programming languages such as R-CORE and R-WHILE. In the present paper, we develop a categorical foundation for this class of languages based on inverse categories with joins. We generalize the notion of extensivity of restriction categories to one that may be accommodated by inverse categories, and use the resulting decisions to give a reversible representation of predicates and assertions. This leads to a categorical semantics for structured reversible flowcharts, which we show to be computationally sound and adequate, as well as equationally fully abstract with respect to the operational semantics under certain conditions

    Temporal Stream Logic: Synthesis beyond the Bools

    Full text link
    Reactive systems that operate in environments with complex data, such as mobile apps or embedded controllers with many sensors, are difficult to synthesize. Synthesis tools usually fail for such systems because the state space resulting from the discretization of the data is too large. We introduce TSL, a new temporal logic that separates control and data. We provide a CEGAR-based synthesis approach for the construction of implementations that are guaranteed to satisfy a TSL specification for all possible instantiations of the data processing functions. TSL provides an attractive trade-off for synthesis. On the one hand, synthesis from TSL, unlike synthesis from standard temporal logics, is undecidable in general. On the other hand, however, synthesis from TSL is scalable, because it is independent of the complexity of the handled data. Among other benchmarks, we have successfully synthesized a music player Android app and a controller for an autonomous vehicle in the Open Race Car Simulator (TORCS.

    Dynamic IFC Theorems for Free!

    Full text link
    We show that noninterference and transparency, the key soundness theorems for dynamic IFC libraries, can be obtained "for free", as direct consequences of the more general parametricity theorem of type abstraction. This allows us to give very short soundness proofs for dynamic IFC libraries such as faceted values and LIO. Our proofs stay short even when fully mechanized for Agda implementations of the libraries in terms of type abstraction.Comment: CSF 2021 final versio

    Empirical Evaluation of Test Coverage for Functional Programs

    Get PDF
    The correlation between test coverage and test effectiveness is important to justify the use of coverage in practice. Existing results on imperative programs mostly show that test coverage predicates effectiveness. However, since functional programs are usually structurally different from imperative ones, it is unclear whether the same result may be derived and coverage can be used as a prediction of effectiveness on functional programs. In this paper we report the first empirical study on the correlation between test coverage and test effectiveness on functional programs. We consider four types of coverage: as input coverages, statement/branch coverage and expression coverage, and as oracle coverages, count of assertions and checked coverage. We also consider two types of effectiveness: raw effectiveness and normalized effectiveness. Our results are twofold. (1) In general the findings on imperative programs still hold on functional programs, warranting the use of coverage in practice. (2) On specific coverage criteria, the results may be unexpected or different from the imperative ones, calling for further studies on functional programs

    Modalities, Cohesion, and Information Flow

    Get PDF
    It is informally understood that the purpose of modal type constructors in programming calculi is to control the flow of information between types. In order to lend rigorous support to this idea, we study the category of classified sets, a variant of a denotational semantics for information flow proposed by Abadi et al. We use classified sets to prove multiple noninterference theorems for modalities of a monadic and comonadic flavour. The common machinery behind our theorems stems from the the fact that classified sets are a (weak) model of Lawvere's theory of axiomatic cohesion. In the process, we show how cohesion can be used for reasoning about multi-modal settings. This leads to the conclusion that cohesion is a particularly useful setting for the study of both information flow, but also modalities in type theory and programming languages at large
    • …
    corecore