1,576 research outputs found

    Foundations of SPARQL Query Optimization

    Full text link
    The SPARQL query language is a recent W3C standard for processing RDF data, a format that has been developed to encode information in a machine-readable way. We investigate the foundations of SPARQL query optimization and (a) provide novel complexity results for the SPARQL evaluation problem, showing that the main source of complexity is operator OPTIONAL alone; (b) propose a comprehensive set of algebraic query rewriting rules; (c) present a framework for constraint-based SPARQL optimization based upon the well-known chase procedure for Conjunctive Query minimization. In this line, we develop two novel termination conditions for the chase. They subsume the strongest conditions known so far and do not increase the complexity of the recognition problem, thus making a larger class of both Conjunctive and SPARQL queries amenable to constraint-based optimization. Our results are of immediate practical interest and might empower any SPARQL query optimizer

    An extension of SPARQL for expressing qualitative preferences

    Full text link
    In this paper we present SPREFQL, an extension of the SPARQL language that allows appending a PREFER clause that expresses "soft" preferences over the query results obtained by the main body of the query. The extension does not add expressivity and any SPREFQL query can be transformed to an equivalent standard SPARQL query. However, clearly separating preferences from the "hard" patterns and filters in the WHERE clause gives queries where the intention of the client is more cleanly expressed, an advantage for both human readability and machine optimization. In the paper we formally define the syntax and the semantics of the extension and we also provide empirical evidence that optimizations specific to SPREFQL improve run-time efficiency by comparison to the usually applied optimizations on the equivalent standard SPARQL query.Comment: Accepted to the 2017 International Semantic Web Conference, Vienna, October 201

    The Odyssey Approach for Optimizing Federated SPARQL Queries

    Full text link
    Answering queries over a federation of SPARQL endpoints requires combining data from more than one data source. Optimizing queries in such scenarios is particularly challenging not only because of (i) the large variety of possible query execution plans that correctly answer the query but also because (ii) there is only limited access to statistics about schema and instance data of remote sources. To overcome these challenges, most federated query engines rely on heuristics to reduce the space of possible query execution plans or on dynamic programming strategies to produce optimal plans. Nevertheless, these plans may still exhibit a high number of intermediate results or high execution times because of heuristics and inaccurate cost estimations. In this paper, we present Odyssey, an approach that uses statistics that allow for a more accurate cost estimation for federated queries and therefore enables Odyssey to produce better query execution plans. Our experimental results show that Odyssey produces query execution plans that are better in terms of data transfer and execution time than state-of-the-art optimizers. Our experiments using the FedBench benchmark show execution time gains of at least 25 times on average.Comment: 16 pages, 10 figure
    • …
    corecore