4 research outputs found

    Reasoning in Description Logic Ontologies for Privacy Management

    Get PDF
    A rise in the number of ontologies that are integrated and distributed in numerous application systems may provide the users to access the ontologies with different privileges and purposes. In this situation, preserving confidential information from possible unauthorized disclosures becomes a critical requirement. For instance, in the clinical sciences, unauthorized disclosures of medical information do not only threaten the system but also, most importantly, the patient data. Motivated by this situation, this thesis initially investigates a privacy problem, called the identity problem, where the identity of (anonymous) objects stored in Description Logic ontologies can be revealed or not. Then, we consider this problem in the context of role-based access control to ontologies and extend it to the problem asking if the identity belongs to a set of known individuals of cardinality smaller than the number k. If it is the case that some confidential information of persons, such as their identity, their relationships or their other properties, can be deduced from an ontology, which implies that some privacy policy is not fulfilled, then one needs to repair this ontology such that the modified one complies with the policies and preserves the information from the original ontology as much as possible. The repair mechanism we provide is called gentle repair and performed via axiom weakening instead of axiom deletion which was commonly used in classical approaches of ontology repair. However, policy compliance itself is not enough if there is a possible attacker that can obtain relevant information from other sources, which together with the modified ontology still violates the privacy policies. Safety property is proposed to alleviate this issue and we investigate this in the context of privacy-preserving ontology publishing. Inference procedures to solve those privacy problems and additional investigations on the complexity of the procedures, as well as the worst-case complexity of the problems, become the main contributions of this thesis.:1. Introduction 1.1 Description Logics 1.2 Detecting Privacy Breaches in Information System 1.3 Repairing Information Systems 1.4 Privacy-Preserving Data Publishing 1.5 Outline and Contribution of the Thesis 2. Preliminaries 2.1 Description Logic ALC 2.1.1 Reasoning in ALC Ontologies 2.1.2 Relationship with First-Order Logic 2.1.3. Fragments of ALC 2.2 Description Logic EL 2.3 The Complexity of Reasoning Problems in DLs 3. The Identity Problem and Its Variants in Description Logic Ontologies 3.1 The Identity Problem 3.1.1 Description Logics with Equality Power 3.1.2 The Complexity of the Identity Problem 3.2 The View-Based Identity Problem 3.3 The k-Hiding Problem 3.3.1 Upper Bounds 3.3.2 Lower Bound 4. Repairing Description Logic Ontologies 4.1 Repairing Ontologies 4.2 Gentle Repairs 4.3 Weakening Relations 4.4 Weakening Relations for EL Axioms 4.4.1 Generalizing the Right-Hand Sides of GCIs 4.4.2 Syntactic Generalizations 4.5 Weakening Relations for ALC Axioms 4.5.1 Generalizations and Specializations in ALC w.r.t. Role Depth 4.5.2 Syntactical Generalizations and Specializations in ALC 5. Privacy-Preserving Ontology Publishing for EL Instance Stores 5.1 Formalizing Sensitive Information in EL Instance Stores 5.2 Computing Optimal Compliant Generalizations 5.3 Computing Optimal Safe^{\exists} Generalizations 5.4 Deciding Optimality^{\exists} in EL Instance Stores 5.5 Characterizing Safety^{\forall} 5.6 Optimal P-safe^{\forall} Generalizations 5.7 Characterizing Safety^{\forall\exists} and Optimality^{\forall\exists} 6. Privacy-Preserving Ontology Publishing for EL ABoxes 6.1 Logical Entailments in EL ABoxes with Anonymous Individuals 6.2 Anonymizing EL ABoxes 6.3 Formalizing Sensitive Information in EL ABoxes 6.4 Compliance and Safety for EL ABoxes 6.5 Optimal Anonymizers 7. Conclusion 7.1 Main Results 7.2 Future Work Bibliograph

    OPTIMIZATION OF NONSTANDARD REASONING SERVICES

    Get PDF
    The increasing adoption of semantic technologies and the corresponding increasing complexity of application requirements are motivating extensions to the standard reasoning paradigms and services supported by such technologies. This thesis focuses on two of such extensions: nonmonotonic reasoning and inference-proof access control. Expressing knowledge via general rules that admit exceptions is an approach that has been commonly adopted for centuries in areas such as law and science, and more recently in object-oriented programming and computer security. The experiences in developing complex biomedical knowledge bases reported in the literature show that a direct support to defeasible properties and exceptions would be of great help. On the other hand, there is ample evidence of the need for knowledge confidentiality measures. Ontology languages and Linked Open Data are increasingly being used to encode the private knowledge of companies and public organizations. Semantic Web techniques facilitate merging different sources of knowledge and extract implicit information, thereby putting at risk security and the privacy of individuals. But the same reasoning capabilities can be exploited to protect the confidentiality of knowledge. Both nonmonotonic inference and secure knowledge base access rely on nonstandard reasoning procedures. The design and realization of these algorithms in a scalable way (appropriate to the ever-increasing size of ontologies and knowledge bases) is carried out by means of a diversified range of optimization techniques such as appropriate module extraction and incremental reasoning. Extensive experimental evaluation shows the efficiency of the developed optimization techniques: (i) for the first time performance compatible with real-time reasoning is obtained for large nonmonotonic ontologies, while (ii) the secure ontology access control proves to be already compatible with practical use in the e-health application scenario.

    Efficient paraconsistent reasoning with rules and ontologies for the semantic web

    Get PDF
    Ontologies formalized by means of Description Logics (DLs) and rules in the form of Logic Programs (LPs) are two prominent formalisms in the field of Knowledge Representation and Reasoning. While DLs adhere to the OpenWorld Assumption and are suited for taxonomic reasoning, LPs implement reasoning under the Closed World Assumption, so that default knowledge can be expressed. However, for many applications it is useful to have a means that allows reasoning over an open domain and expressing rules with exceptions at the same time. Hybrid MKNF knowledge bases make such a means available by formalizing DLs and LPs in a common logic, the Logic of Minimal Knowledge and Negation as Failure (MKNF). Since rules and ontologies are used in open environments such as the Semantic Web, inconsistencies cannot always be avoided. This poses a problem due to the Principle of Explosion, which holds in classical logics. Paraconsistent Logics offer a solution to this issue by assigning meaningful models even to contradictory sets of formulas. Consequently, paraconsistent semantics for DLs and LPs have been investigated intensively. Our goal is to apply the paraconsistent approach to the combination of DLs and LPs in hybrid MKNF knowledge bases. In this thesis, a new six-valued semantics for hybrid MKNF knowledge bases is introduced, extending the three-valued approach by Knorr et al., which is based on the wellfounded semantics for logic programs. Additionally, a procedural way of computing paraconsistent well-founded models for hybrid MKNF knowledge bases by means of an alternating fixpoint construction is presented and it is proven that the algorithm is sound and complete w.r.t. the model-theoretic characterization of the semantics. Moreover, it is shown that the new semantics is faithful w.r.t. well-studied paraconsistent semantics for DLs and LPs, respectively, and maintains the efficiency of the approach it extends
    corecore