3 research outputs found

    Extracting tactics learned from self-play in general games

    Get PDF
    Local, spatial state-action features can be used to effectively train linear policies from self-play in a wide variety of board games. Such policies can play games directly, or be used to bias tree search agents. However, the resulting feature sets can be large, with a significant amount of overlap and redundancies between features. This is a problem for two reasons. Firstly, large feature sets can be computationally expensive, which reduces the playing strength of agents based on them. Secondly, redundancies and correlations between features impair the ability for humans to analyse, interpret, or understand tactics learned by the policies. We look towards decision trees for their ability to perform feature selection, and serve as interpretable models. Previous work on distilling policies into decision trees uses states as inputs, and distributions over the complete action space as outputs. In contrast, we propose and evaluate a variety of decision tree types, which take state-action pairs as inputs, and provide various different types of outputs on a per-action basis. An empirical evaluation over 43 different board games is presented, and two of those games are used as case studies where we attempt to interpret the discovered features

    Foundations of Digital Archæoludology

    No full text
    Digital Archaeoludology (DAL) is a new field of study involving the analysis and reconstruction of ancient games from incomplete descriptions and archaeological evidence using modern computational techniques. The aim is to provide digital tools and methods to help game historians and other researchers better understand traditional games, their development throughout recorded human history, and their relationship to the development of human culture and mathematical knowledge. This work is being explored in the ERC-funded Digital Ludeme Project. The aim of this inaugural international research meeting on DAL is to gather together leading experts in relevant disciplines - computer science, artificial intelligence, machine learning, computational phylogenetics, mathematics, history, archaeology, anthropology, etc. - to discuss the key themes and establish the foundations for this new field of research, so that it may continue beyond the lifetime of its initiating project
    corecore