41 research outputs found

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    Multi-Dimensional Joins

    Get PDF
    We present three novel algorithms for performing multi-dimensional joins and an in-depth survey and analysis of a low-dimensional spatial join. The first algorithm, the Iterative Spatial Join, performs a spatial join on low-dimensional data and is based on a plane-sweep technique. As we show analytically and experimentally, the Iterative Spatial Join performs well when internal memory is limited, compared to competing methods. This suggests that the Iterative Spatial Join would be useful for very large data sets or in situations where internal memory is a shared resource and is therefore limited, such as with today's database engines which share internal memory amongst several queries. Furthermore, the performance of the Iterative Spatial Join is predictable and has no parameters which need to be tuned, unlike other algorithms. The second algorithm, the Quickjoin algorithm, performs a higher-dimensional similarity join in which pairs of objects that lie within a certain distance epsilon of each other are reported. The Quickjoin algorithm overcomes drawbacks of competing methods, such as requiring embedding methods on the data first or using multi-dimensional indices, which limit the ability to discriminate between objects in each dimension, thereby degrading performance. A formal analysis is provided of the Quickjoin method, and experiments show that the Quickjoin method significantly outperforms competing methods. The third algorithm adapts incremental join techniques to improve the speed of calculating the Hausdorff distance, which is used in applications such as image matching, image analysis, and surface approximations. The nearest neighbor incremental join technique for indices that are based on hierarchical containment use a priority queue of index node pairs and bounds on the distance values between pairs, both of which need to modified in order to calculate the Hausdorff distance. Results of experiments are described that confirm the performance improvement. Finally, a survey is provided which instead of just summarizing the literature and presenting each technique in its entirety, describes distinct components of the different techniques, and each technique is decomposed into an overall framework for performing a spatial join

    Particle Physics Reference Library

    Get PDF
    This third open access volume of the handbook series deals with accelerator physics, design, technology and operations, as well as with beam optics, dynamics and diagnostics. A joint CERN-Springer initiative, the “Particle Physics Reference Library” provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open acces

    Multilayer representation for geological information systems

    Get PDF
    En esta tesis se propone el uso de la Representación de Terrenos Basada en Stacks (SBRT, de sus siglas en inglés) para datos geológicos volumétricos. Esta estructura de datos codifica estructuras geológicas representadas como stacks utilizando una compacta representación de datos. A continuación, hemos formalizado la SBRT con un esquema basado en la teoría de geo-átomos para proporcionar una definición precisa y determinar sus propiedades. Esta tesis también introduce una nueva estructura de datos llamada QuadStack, mejorando los resultados de compresión proporcionados por la SBRT al aprovechar la redundancia de información que a menudo se encuentra en los datos distribuidos por capas. También se han proporcionado métodos de visualización para estas representaciones basados en el conocido algoritmo de visualización raycasting. Al mantener los datos en todo momento en la memoria de la GPU de forma compacta, los métodos propuestos son lo suficientemente rápidos como para proporcionar velocidades de visualización interactivas.In this thesis we propose the use of the Stack-Based Representation of Terrains (SBRT) for volumetric geological data. This data structure encodes geological structures represented as stacks using a compact data representation. The SBRT is further formalized with a framework based on the geo-atom theory to provide a precise definition and determine its properties. Also, we introduce QuadStacks, a novel data structure that improves the compression results provided by the SBRT, by exploiting in its data arrangement the redundancy often found in layered dataset. This thesis also provides direct visualization methods for the SBR and QuadStacks based on the well-known raycasting algorithm. By keeping the whole dataset in the GPU in a compact way, the methods are fast enough to provide real-time frame rates.Tesis Univ. Jaén. Departamento de Informática. Leída el 19 de septiembre de 2019

    SuperB Progress Report for Accelerator

    Full text link
    corecore