840 research outputs found

    Forward correction and fountain codes in delay tolerant networks

    Get PDF
    Abstract—Delay tolerant Ad-hoc Networks make use of mobility of relay nodes to compensate for lack of permanent connectivity and thus enable communication between nodes that are out of range of each other. To decrease delivery delay, the information that needs to be delivered is replicated in the network. Our objective in this paper is to study replication mechanisms that include coding in order to improve the probability of successful delivery within a given time limit. We propose an analytical approach that allows to quantify tradeoffs between resources and performance measures (energy and delay). We study the effect of coding on the performance of the network while optimizing parameters that govern routing. Our results, based on fluid approximations, are compared to simulations which validate the model 1. Index Terms—Forward correction, fountain codes, delay tolerant networks I

    Robust streaming in delay tolerant networks

    Get PDF
    Delay Tolerant Networks (DTN) do not provide any end to end connectivity guarantee. Thus, transporting data over such networks is a tough challenge as most of Internet applications assume a form of persistent end to end connection. While research in DTN has mainly addressed the problem of routing in various mobility contexts with the aim to improve bundle delay delivery and data delivery ratio, little attention has been paid to applications. This paper investigates the support of streaming-like applications over DTN. We identify how DTN characteristics impact on the overall performances of these applications and present Tetrys, a transport layer mechanism, which enables robust streaming over DTN. Tetrys is based on an on the fly coding mechanism able to ensure full reliability without retransmission and fast in-order bundle delivery in comparison to classical erasure coding schemes. We evaluate our Tetrys prototype on real DTN connectivity traces captured from the Rollerblading tour in Paris. Simulations show that on average, Tetrys clearly outperforms all other reliability schemes in terms of bundles delivery service

    Raptor codes for infrastructure-to-vehicular broadcast services

    Get PDF

    Energy Efficient and Guaranteed Packet Delivery in Mobile Ad Hoc Networks

    Get PDF
    For Ad-hoc network routing protocols, high delivery ratio with low energy consumption is one of design challenges. This paper identifies the limitations of ad hoc routing scheme, in terms of guaranteed delivery with low energy consumption. Accordingly, this paper describe a scheme, in which data is forwarded along a pre-established lone path to save energy, and a high delivery ratio is completed by path repair whenever a break is detected. This paper propose a humble, quick, local path repairing method, whereby a malicious node can be tracked by low energy. This paper implement encoding and compression technique scheme and compare its performance with those of pure lone path without repair and multi-path routing schemes

    Dynamic control of Coding in Delay Tolerant Networks

    Get PDF
    Delay tolerant Networks (DTNs) leverage the mobility of relay nodes to compensate for lack of permanent connectivity and thus enable communication between nodes that are out of range of each other. To decrease message delivery delay, the information to be transmitted is replicated in the network. We study replication mechanisms that include Reed-Solomon type codes as well as network coding in order to improve the probability of successful delivery within a given time limit. We propose an analytical approach that allows us to compute the probability of successful delivery. We study the effect of coding on the performance of the network while optimizing parameters that govern routing
    corecore