1,392 research outputs found

    Forward and Adjoint Sensitivity Computation of Chaotic Dynamical Systems

    Get PDF
    This paper describes a forward algorithm and an adjoint algorithm for computing sensitivity derivatives in chaotic dynamical systems, such as the Lorenz attractor. The algorithms compute the derivative of long time averaged "statistical" quantities to infinitesimal perturbations of the system parameters. The algorithms are demonstrated on the Lorenz attractor. We show that sensitivity derivatives of statistical quantities can be accurately estimated using a single, short trajectory (over a time interval of 20) on the Lorenz attractor.Comment: 3/7/2012: applied chain rule to Equation (7), so that Equations (15), (16) and (17) go through w.o. differentiable Lyapunov vectors. = 4/10/2012: Windowing scheme for forward sensitivity. Reduced heavy-tailedness in computed derivatives. Updated Figs 8 and 9. = 9/7/2012: Minor revision, accepted by JC

    Probability density adjoint for sensitivity analysis of the Mean of Chaos

    Full text link
    Sensitivity analysis, especially adjoint based sensitivity analysis, is a powerful tool for engineering design which allows for the efficient computation of sensitivities with respect to many parameters. However, these methods break down when used to compute sensitivities of long-time averaged quantities in chaotic dynamical systems. The following paper presents a new method for sensitivity analysis of {\em ergodic} chaotic dynamical systems, the density adjoint method. The method involves solving the governing equations for the system's invariant measure and its adjoint on the system's attractor manifold rather than in phase-space. This new approach is derived for and demonstrated on one-dimensional chaotic maps and the three-dimensional Lorenz system. It is found that the density adjoint computes very finely detailed adjoint distributions and accurate sensitivities, but suffers from large computational costs.Comment: 29 pages, 27 figure

    Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations

    Full text link
    The adjoint method, among other sensitivity analysis methods, can fail in chaotic dynamical systems. The result from these methods can be too large, often by orders of magnitude, when the result is the derivative of a long time averaged quantity. This failure is known to be caused by ill-conditioned initial value problems. This paper overcomes this failure by replacing the initial value problem with the well-conditioned "least squares shadowing (LSS) problem". The LSS problem is then linearized in our sensitivity analysis algorithm, which computes a derivative that converges to the derivative of the infinitely long time average. We demonstrate our algorithm in several dynamical systems exhibiting both periodic and chaotic oscillations.Comment: submitted to JCP in revised for

    Theory and computation of covariant Lyapunov vectors

    Full text link
    Lyapunov exponents are well-known characteristic numbers that describe growth rates of perturbations applied to a trajectory of a dynamical system in different state space directions. Covariant (or characteristic) Lyapunov vectors indicate these directions. Though the concept of these vectors has been known for a long time, they became practically computable only recently due to algorithms suggested by Ginelli et al. [Phys. Rev. Lett. 99, 2007, 130601] and by Wolfe and Samelson [Tellus 59A, 2007, 355]. In view of the great interest in covariant Lyapunov vectors and their wide range of potential applications, in this article we summarize the available information related to Lyapunov vectors and provide a detailed explanation of both the theoretical basics and numerical algorithms. We introduce the notion of adjoint covariant Lyapunov vectors. The angles between these vectors and the original covariant vectors are norm-independent and can be considered as characteristic numbers. Moreover, we present and study in detail an improved approach for computing covariant Lyapunov vectors. Also we describe, how one can test for hyperbolicity of chaotic dynamics without explicitly computing covariant vectors.Comment: 21 pages, 5 figure

    Least Squares Shadowing Sensitivity Analysis of a Modified Kuramoto-Sivashinsky Equation

    Full text link
    Computational methods for sensitivity analysis are invaluable tools for scientists and engineers investigating a wide range of physical phenomena. However, many of these methods fail when applied to chaotic systems, such as the Kuramoto-Sivashinsky (K-S) equation, which models a number of different chaotic systems found in nature. The following paper discusses the application of a new sensitivity analysis method developed by the authors to a modified K-S equation. We find that least squares shadowing sensitivity analysis computes accurate gradients for solutions corresponding to a wide range of system parameters.Comment: 23 pages, 14 figures. Submitted to Chaos, Solitons and Fractals, in revie
    corecore