32 research outputs found

    Design and Implementation of a High Speed Cable-Based Planar Parallel Manipulator

    Get PDF
    Robotic automation has been the major driving force in modern industrial developments. High speed pick-and-place operations find their place in many manufacturing applications. The goal of this project is to develop a class of high speed robots that has a planar workspace. The presented robots are intended for pick-and-place applications that have a relatively large workspace. In order to achieve this goal, the robots must be both stiff and light. The design strategies adapted in this study were expanded from the research work by Prof Khajepour and Dr. Behzadipour. The fundamental principles are to utilize a parallel mechanism to enhance robot stiffness and cable construction to reduce moving inertia. A required condition for using cable construction is the ability to hold all cables under tension. This can only be achieved under certain conditions. The design phase of the study includes a static analysis on the robot manipulator that ensures certain mechanical components are always held under tension. This idea is extended to address dynamic situations where the manipulator velocity and acceleration are bounded. Two concept robot configurations, 2D-Deltabot, and 2D-Betabot are presented. Through a series of analyses from the robot inverse kinematic model, the dynamic properties of a robot can be computed in an effective manner. It was determined that the presented robots can achieve 4g acceleration and 4m/s maximum speed within their 700mm by 100mm workspace with a pair of 890W rotary actuators controlling two degrees of freedom. The 2D-Deltabot was chosen for prototype development. A kinematics calibration algorithm was developed to enhance the robot accuracy. Experimental test results had shown that the 2D-Deltabot was capable of running at 81 cycles per minute on a 730mm long pick-and-place path. Further experiments showed that the robot had a position accuracy of 0. 62mm and a position repeatability of 0. 15mm, despite a few manufacturing errors from the prototype fabrication

    An extension of the Dewey decimal system of classification applied to the engineering industries

    Get PDF

    Proceedings of the Interagency Workshop on Lighter than Air Vehicles

    Get PDF
    Papers presented at the workshop are reported. Topics discussed include: economic and market analysis, technical and design considerations, manufacturing and operations, design concepts, airship applications, and unmanned and tethered systems

    Evaluation of finite element analysis techniques applied to a floating offshore wind turbine

    Get PDF
    The work presented here is a research thesis of the Ph. D programme in The School of Computing, Science & Engineering at The University of Salford UK. The work presents the evaluation of using explicit finite element techniques for structural non-linear dynamic analysis of a floating offshore wind turbine used for harnessing wind kinetic energy and converting it to electricity. The LS-DYNA3D explicit finite element analysis programme is used in performing the evaluation of the analysis and in creating a full scale model typical to the one evaluated. The developed model (case study) is a 1.4MW power rated floating 3 blades turbine elevated at 46.5 m above main sea level a top a tripod lattice steel tower firmly resting on a moored floating concrete hull buoy, positioned on a concrete circular disk. The mooring cables supporting the floating units in the multi unit farm are designed to share seabed anchoring piles for economic reasons. The model is intended for use in moderately deep waters of up to 500m. The State-of-the-art report is presented concerning wind energy technology, floating offshore wind structures and important features of the LS-DYNA3D code. The theoretical basics for service loads experienced by the floating wind turbine are explored and the loads are quantified. The Verification and validation work on developed small models is presented to ensure confidence in the developed full scale model and the evaluation of the finite element techniques which may be applied to such structures. Development of full scale model, material properties, loads and boundary conditions are presented. Recommendations both for this model and future development are accordingly made

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    Handbook of Ocean Wave Energy

    Get PDF
    Offshore Engineering; Renewable and Green Energy; Numerical and Computational Physics, Simulation; Natural Resource and Energy Economics; Engineering Fluid Dynamic

    Time Localization of Abrupt Changes in Cutting Process using Hilbert Huang Transform

    Get PDF
    Cutting process is extremely dynamical process influenced by different phenomena such as chip formation, dynamical responses and condition of machining system elements. Different phenomena in cutting zone have signatures in different frequency bands in signal acquired during process monitoring. The time localization of signal’s frequency content is very important. An emerging technique for simultaneous analysis of the signal in time and frequency domain that can be used for time localization of frequency is Hilbert Huang Transform (HHT). It is based on empirical mode decomposition (EMD) of the signal into intrinsic mode functions (IMFs) as simple oscillatory modes. IMFs obtained using EMD can be processed using Hilbert Transform and instantaneous frequency of the signal can be computed. This paper gives a methodology for time localization of cutting process stop during intermittent turning. Cutting process stop leads to abrupt changes in acquired signal correlated to certain frequency band. The frequency band related to abrupt changes is localized in time using HHT. The potentials and limitations of HHT application in machining process monitoring are shown

    Proceedings of the 14th Aerospace Mechanisms Symposium

    Get PDF
    Technological areas covered include aviation propulsion, aerodynamic devices, and crew safety; space vehicle propulsion, guidance and control; spacecraft deployment, positioning, and pointing; spacecraft bearings, gimbals, and lubricants; and large space structures. Devices for payload deployment, payload retention, and crew extravehicular activity on the space shuttle orbiter are also described
    corecore