109 research outputs found

    Knowledge based approach to process engineering design

    Get PDF

    Truth maintenance in knowledge-based systems

    Get PDF
    Truth Maintenance Systems (TMS) have been applied in a wide range of domains, from diagnosing electric circuits to belief revision in agent systems. There also has been work on using the TMS in modern Knowledge-Based Systems such as intelligent agents and ontologies. This thesis investigates the applications of TMSs in such systems. For intelligent agents, we use a “light-weight” TMS to support query caching in agent programs. The TMS keeps track of the dependencies between a query and the facts used to derive it so that when the agent updates its database, only affected queries are invalidated and removed from the cache. The TMS employed here is “light-weight” as it does not maintain all intermediate reasoning results. Therefore, it is able to reduce memory consumption and to improve performance in a dynamic setting such as in multi-agent systems. For ontologies, this work extends the Assumption-based Truth Maintenance System (ATMS) to tackle the problem of axiom pinpointing and debugging in ontology-based systems with different levels of expressivity. Starting with finding all errors in auto-generated ontology mappings using a “classic” ATMS [23], we extend the ATMS to solve the axiom pinpointing problem in Description Logics-based Ontologies. We also attempt this approach to solve the axiom pinpointing problem in a more expressive upper ontology, SUMO, whose underlying logic is undecidable

    Diagnosing runtime violations of security and dependability properties

    Get PDF
    Monitoring the preservation of security and dependability (S&D) properties of complex software systems is widely accepted as a necessity. Basic monitoring can detect violations but does not always provide sufficient information for deciding what the appropriate response to a violation is. Such decisions often require additional diagnostic information that explains why a violation has occurred and can, therefore, indicate what would be an appropriate response action to it. In this thesis, we describe a diagnostic procedure for generating explanations of violations of S&D properties developed as extension of a runtime monitoring framewoek, called EVEREST. The procedure is based on a combination of abductive and evidential reasoning about violations of S&D properties which are expressed in Event Calculus.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore