254 research outputs found

    HYPOTHALAMIC CIRCUITS IN THE CONTROL OF FEEDING AND EMOTIONAL BEHAVIORS

    Get PDF
    Feeding results from the integration of both nutritional and affective states, and is guided by complex neural circuitry in the brain. The hypothalamus is a critical center controlling feeding and motivated behaviors. We found that targeted photostimulation of projections from the lateral hypothalamus (LH) to the paraventricular hypothalamus (PVH) in mice elicited voracious feeding and repetitive self-grooming behavior. GABA neurotransmission in the LH-\u3ePVH circuit mediated the evoked feeding behavior, and elicited behavioral approach, whereas glutamate release promoted repetitive self-grooming, which was stress-related in nature. Optogenetic inhibition of LHGABA -\u3ePVH circuit reduced feeding after fasting, whereas photostimulation abruptly stopped ongoing self-grooming and immediately elicited feeding. Oppositely, optogenetic inhibition of LHGlutamate-\u3ePVH circuit reduced repetitive self-grooming, whereas photostimulation suppressed fast-refeeding in exchange for repetitive self-grooming. Optogenetically activating and silencing PVH neurons directly recapitulated these findings, and demonstrated the necessity of glutamatergic PVH neurons in mediating the competition between self-grooming and feeding. Together, these results provided evidence that the mutually exclusive nature of feeding and self-grooming behaviors are in part mediated by distinct components in the LH-\u3ePVH circuit. Interestingly, photostimulating PVH neurons with greater intensity promoted transitions from grooming to frantic escape-jumping, suggesting scalability of stress-related behaviors mediated by PVH neural activity. Because evoked jumping resembled attempts to escape, we posited PVH neurons mediate defensive responses. Validating this, photostimulating PVH neurons induced avoidance and increased locomotion, two classic behavioral indicators of active defense strategies. Anterograde tracing showed that PVH neurons densely projected to the midbrain region in and surrounding the ventral tegmental area (VTA), a brain region well-known for its roles in motivated behaviors. Indeed, photostimulation of PVH-\u3emidbrain projections produced escape behaviors and conditioned place aversion. Combined optogenetic and chemogenetic experiments showed that glutamatergic-midbrain neurons were required for escape behaviors. Further, glutamatergic-midbrain neurons displayed increased neural population activity in vivo during a fear-provoking situation, validating a role for this population in processing threat. Taken together, our work reveals novel hypothalamic circuits in the control of feeding, emotional valence, and behaviors related to stress and defense. These findings shed light on possible neural mechanisms underlying complex disease states characterized by feeding abnormalities, anxiety and fear

    Hippocampal output to neocortex: Examination of the electrophysiological and plastic properties of CA1 projections to the perirhinal cortex

    Get PDF
    The hippocampal formation is an important structure in learning and memory that is required for the transfer of sensory information into long-term storage. This long-term storage is believed to occur in the neocortex and the physiological mechanism underpinning this transfer of information is believed to be long-term changes in synaptic plasticity, namely long-term potentiation (LTP) and depression (LTD). The aim of this thesis is to characterise synaptic plasticity in a particular hippocampal-neocortical projection. The CA1 to perirhinal cortex projection has been previously shown to sustain LTP; by stimulating the area CA1 and recording in the perirhinal cortex, we show that it can sustain short- and long-term changes in synaptic plasticity. Additionally we demonstrate that multiple frequencies of high-frequency stimulation can induce LTP in this projection and that LTP-induction may require AMPA/kainate receptor activation but not NMDA receptor activation; indicating that glutamatergic signalling underlies synaptic plasticity in this projection. We also determine the role of the CA1 to perirhinal cortex projection in a model of electrophysiologically excitatory and inhibitory hippocampal projections to the parahippocampal region of the neocortex. We propose that this projection forms part of an electrophysiologically excitatory circuit from the distal CA1 and proximal subiculum along with the lateral entorhinal cortex. Moreover, we investigate the roles of the hippocampus and perirhinal cortex in recognition and spatial memory. Utilising an object recognition task (a recognition memory task) and an object displacement task (a spatial memory task), we show that there are increased levels of hippocampal brain-derived neurotrophic factor (BDNF) following the spatial task. Furthermore, we demonstrate that AMPA/kainate glutamate receptors are necessary for performance in the object recognition task whereas both NMDA and AMPA/kainate receptors are required for the object displacement task. These findings suggest that glutamatergic signalling not only underlies synaptic plasticity in the CA1 to perirhinal cortex projection but that it is also required for learning and memory in recognition and spatial tasks

    NEURAL CIRCUIT DYNAMICS AND FUNCTION OF COMPLEX BEHAVIORAL STATES

    Get PDF
    Mammalian neural circuits are sophisticated biological systems that choreograph behavioral processes vital for survival. While the inherent complexity of discrete neural circuits has proven difficult to decipher, many parallel methodological developments promise to help delineate the function and connectivity of molecularly defined neural circuits. Here, I utilize novel neurotechniques to precisely monitor and manipulate anxiety- and feeding-related circuit activity. By using a holistic, multifaceted approach for perturbing and measuring neural circuit dynamics, we begin to provide a framework for understanding how adaptive and maladaptive behavioral states are manifested through the cooperative interactions of discrete extended amygdala, midbrain, and hypothalamic circuit elements.Doctor of Philosoph

    Investigation of the Functional Effects of Two Novel Ampakines in the CNS

    Get PDF
    The ionotropic glutamate AMPA ((R,S)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor mediates the majority of excitatory transmission in the CNS. AMPA receptors play a crucial role in both basal neurotransmission and synaptic plasticity events (such as long-term potentiation, LTP). Compounds that ‘potentiate’ AMPA receptor function (‘Ampakines’) are known to positively modulate glutamatergic AMPA receptor-gated currents, by slowing the deactivation and desensitisation rate of the receptors, in the presence of the endogenous agonist glutamate. Ampakines have been shown to facilitate LTP induction, improve cognition, and as such have potential in the treatment of conditions such as depression and psychoses (schizophrenia). The main aim of this thesis was to investigate the functional actions of two novel Ampakines, Org 26576 and Org 24448, in the mouse brain. The studies described in this thesis were designed to address this and are outlined as follows: 1. Characterisation and validation of an in vivo semi-quantitative model of [14C]-2-deoxyglucose autoradiography in the C57Bl/6J mouse The first study sought to develop and characterise a model of [14C]-2-deoxyglucose autoradiography, to allow measurement of regional alterations in local cerebral glucose use (LCGU) in the mouse CNS. Following intraperitoneal injection of [14C]-2-deoxyglucose in C57Bl/6J mice, the radiolabelled brains were sectioned and exposed to x-ray film. The resultant autoradiograms were semi-quantitatively analysed for relative optical densities in predetermined regions of interest. The baseline LCGU values in different brain regions were found to be consistent with previously published data. The model was also able to replicate the effects of a well-characterised compound, the NMDA receptor antagonist MK-801 (0.5 mg/kg), in respect to functional cerebral changes. Characteristic effects such as prominent increases in LCGU in the limbic system, and decreases in the somatosensory cortex were reproduced in the model. Thus the semi-quantitative [14C]-2-deoxyglucose model was reproducible and accurate and thus could be further used to investigate the effects of the novel Ampakines, Org 26576 and Org 24448, on cerebral function. 2. Investigation into the effects of acute administration of the novel Ampakines Org 26576 and Org 24448 on functional activity in the murine cerebrum Following the establishment of the methodology, regional alterations in LCGU in response to the Ampakines Org 26576 and Org 24448 were investigated using [14C]-2-deoxyglucose autoradiography. Both Org 26576 and Org 24448 produced regionally selective, dose-dependent increases in LCGU in the mouse cerebrum when administered acutely (~1 hr). The compounds displayed similar yet functionally distinct profiles of activation, the highest levels of activation occurred in areas of the limbic system (hippocampus), sensory systems, and various nuclei (raphe nucleus). Their effects were blocked by pre-administration of the potent selective AMPA receptor antagonist, NBQX (10 mg/kg), which itself had minimal effects on LCGU. These data provide an anatomical basis for the cerebral activation induced by these compounds, which are directly AMPA receptor mediated. Areas activated also closely correlated with brain regions implicated in various psychiatric conditions, and as such is suggestive of a potential therapeutic benefit of these compounds in conditions such as depression and schizophrenia. 3. Investigation into the effects of chronic administration of the novel Ampakines Org 26576 and Org 24448 on functional activity, neurogenesis and receptor/signalling alterations in the murine cerebrum Following the demonstration that acute administration of Org 26576 and Org 24448 displayed regionally selective and dose-dependent alterations in LCGU, the effect of chronic administration of the Ampakines Org 26576 and Org 24448 on regional functional alterations ([14C]-2-deoxyglucose autoradiography), neurogenesis (BrdU labelling), and proteins levels (GluR, MAPK, LynK and CREB) (Western blot analysis) were investigated. Chronic administration (7 and 28 days) of Org 26576 (1 mg/kg) and Org 24448 (10 mg/kg) induced functional cerebral increases in the mouse cerebrum particularly in areas of the mesocorticolimbic system, which were not only rapid in onset, with significant effects visible after 7 days administration; but importantly were also persistent and long lasting. Chronic administration of the compounds had no significant effect on the level of neurogenesis or on the levels AMPA receptor subunits (GluR1,2,3), and signalling pathways (MAPK/LynK-CREB pathway), implicated in AMPA/Ampakine signalling, in the murine hippocampus. These data show that the Ampakines Org 26576 and Org 24448 when administered chronically can potentiate complex neural networks intimately associated with disease states, the effects of which are maintained over prolonged periods. There was no evidence that this involved an effect on neurogenesis or the MAPK/LynK-CREB signalling pathway. 4. Modulation of AMPA receptor kinetics by Org 26576 and Org 24448 influences synaptic plasticity in the murine hippocampus The ability of Org 26576 and Org 24448 to modify baseline kinetic properties of AMPA receptors and a paradigm of synaptic plasticity, LTP, in the mouse hippocampus was investigated using electrophysiology. Both Org 26576 and Org 24448 produced dose-dependant increases in fEPSP amplitude without affecting the half-width of responses, in acute hippocampal slices. Concentrations of both compounds, equating to functionally active levels witnessed in vivo, potentiated a stable form of LTP; whilst higher EC50 concentrations prevented the maintenance of LTP. These results are suggestive that Org 26576 and Org 24448 are effective in boosting the neural correlate of cognition, LTP, and may have potential in treating cognitive deficits, for example those associated with depression, schizophrenia or Alzheimer’s disease. The data presented in this thesis illustrate that the novel Ampakines Org 26576 and Org 24448 centrally modulate brain regions and circuitry intimately associated with conditions such as depression and schizophrenia (psychoses), with effects that are rapid in onset and persistent over chronic periods of administration. Specifically targeting the glutamatergic system through the use of these compounds may provide an innovative approach to treat various conditions that may be partly due to a compromise of normal excitatory glutamatergic neurotransmission

    Network interactions of medial prefrontal cortex, hippocampus and reuniens nucleus of the midline thalamus

    Get PDF
    Le présent mémoire corrobore l'hypothèse selon laquelle l'hippocampe, le cortex préfrontal et le noyau reuniens du thalamus constituent un réseau fonctionnel dans lequel le noyau reuniens servirait d'interfacé entre l'hippocampe et le cortex pré frontal. Bien que la voie hippocampo-corticale de ce réseau ait été abondamment étudiée, cela n'est pas le cas pour la voie reuniens-préfrontale. Nous décrivons ici, pour la première fois, la réponse de neurones du cortex préfrontal médian aux stimulations du noyau reuniens. Chez des chats sous anesthésie (kétamine-xylazine), nous avons effectué simulatanément 1) des enregistrements intra- et extracellulaires dans le cortex préfrontal médian et 2) des stimulations du noyau reuniens ou de l'hippocampe à l'aide d'électrodes bipolaires. Nous avons ainsi démontré que la réponse de neurones du cortex préfrontal médian aux stimulations du noyau reuniens est distincte des réponses évoquées par des stimulations hippocampiques, que la voie reuniens-préfrontale est sujette à la plasticité à court terme et qu'une région restreinte du cortex préfrontal médian sert de relai à la voie hippocampo-cortico-thalamique

    Cholinergic modulation of cognitive processing: insights drawn from computational models

    Get PDF
    Acetylcholine plays an important role in cognitive function, as shown by pharmacological manipulations that impact working memory, attention, episodic memory, and spatial memory function. Acetylcholine also shows striking modulatory influences on the cellular physiology of hippocampal and cortical neurons. Modeling of neural circuits provides a framework for understanding how the cognitive functions may arise from the influence of acetylcholine on neural and network dynamics. We review the influences of cholinergic manipulations on behavioral performance in working memory, attention, episodic memory, and spatial memory tasks, the physiological effects of acetylcholine on neural and circuit dynamics, and the computational models that provide insight into the functional relationships between the physiology and behavior. Specifically, we discuss the important role of acetylcholine in governing mechanisms of active maintenance in working memory tasks and in regulating network dynamics important for effective processing of stimuli in attention and episodic memory tasks. We also propose that theta rhythm plays a crucial role as an intermediary between the physiological influences of acetylcholine and behavior in episodic and spatial memory tasks. We conclude with a synthesis of the existing modeling work and highlight future directions that are likely to be rewarding given the existing state of the literature for both empiricists and modelers
    corecore