1,350 research outputs found

    High-Resolution Mathematical and Numerical Analysis of Involution-Constrained PDEs

    Get PDF
    Partial differential equations constrained by involutions provide the highest fidelity mathematical models for a large number of complex physical systems of fundamental interest in critical scientific and technological disciplines. The applications described by these models include electromagnetics, continuum dynamics of solid media, and general relativity. This workshop brought together pure and applied mathematicians to discuss current research that cuts across these various disciplines’ boundaries. The presented material illuminated fundamental issues as well as evolving theoretical and algorithmic approaches for PDEs with involutions. The scope of the material covered was broad, and the discussions conducted during the workshop were lively and far-reaching

    ISCR Annual Report: Fical Year 2004

    Full text link

    Conformal electromagnetic wave propagation using primal mimetic finite elements

    Get PDF
    Elektromagnetische Wellenausbreitung bildet die physikalische Grundlage für unzählige Anwendungen in verschiedenen Bereichen der heutigen Welt. Um räumliche Szenarien zu modellieren, muss der kontinuierliche Raum in geeigneter Weise in ein Rechengebiet umgewandelt werden. Üblich diskretisierte Modelle – welche auf verschiedenen Größen beruhen – berücksichtigen die Beziehungen zwischen Feldvariablen mittels Relationen, welche durch partielle Differentialgleichungen repräsentiert werden. Um mathematische Beziehungen zwischen abhängigen Variablen in zweckdienlicher Art nachzubilden, schaffen hyperkomplexe Zahlensysteme ein passendes alternatives Rahmenwerk. Dieser Ansatz bezweckt das Einbinden bestimmter Systemeigenschaften und umfasst zusätzlich zur Modellierung von Feldproblemen, bei denen alle Variablen vorkommen, auch vereinfachte Modelle. Um eine wettbewerbsfähige Alternative zur üblichen numerischen Behandlung elektromagnetischer Felder in beobachtungsorientierter Weise darzubieten, wird das elektrische und magnetische Feld elektromagnetischer Wellenfelder als eine zusammengefasste Feldgröße, eingebettet im Funktionenraum, verstanden. Dieses Vorgehen ist intuitiv, da beide Felder in der Elektrodynamik gemeinsam auftreten und direkt messbar sind. Der Schwerpunkt dieser Arbeit ist in zwei Ziele untergliedert. Auf der einen Seite wird ein umformuliertes Maxwell-System in einer metrikfreien Umgebung mittels dem sogenannten „bikomplexen Ansatz“ umfassend untersucht. Auf der anderen Seite wird eine mögliche numerische Implementierung hinsichtlich der Finite-Elemente-Methode auf modernem Wege durch Nutzung der diskreten äußeren Analysis mit Fokus auf Genauigkeitsbelange bewertet. Hinsichtlich der numerischen Genauigkeitsbewertung wird demonstriert, dass der vorgelegte Ansatz grundsätzlich eine höhere Exaktheit zeigt, wenn man ihn mit Formulierungen vergleicht, welche auf der Helmholtz-Gleichung beruhen. Diese Dissertation trägt eine generalisierte hyperkomplexe alternative Darstellung von gewöhnlichen elektrodynamischen Ausdrucksweisen zum Themengebiet der Wellenausbreitung bei. Durch die Nutzung einer direkten Formulierung des elektrischen Feldes in Verbindung mit dem magnetischen Feld wird die Rechengenauigkeit von Randwertproblemen erhöht. Um diese Genauigkeitserhöhung zu erreichen, wird eine geeignete Erweiterung der de Rham-Kohomologie unterbreitet.Electromagnetic wave propagation provides the physical basis for countless applications in various subjects of today’s world. In order to model spatial scenarios, the continuous space must be converted to an appropriate computational domain. Ordinarily discretized models – which are based on distinct quantities – consider the connection between field variables by relations which are represented by partial differential equations. To reproduce mathematical relationships between dependent variables in a convenient manner, hypercomplex number systems build a suitable alternative framework. This approach aims to incorporate certain system properties and covers, in addition to the modeling of field problems where all variables are present, also simplified models. To provide a competitive alternative to the ordinary numerical handling of electromagnetic fields in an observation-based way, the electric and magnetic field of electromagnetic wave fields is understood as only one combined field variable embedded in the function space. This procedure is intuitive since both fields occur together in electrodynamics and are directly measureable. The focus of this thesis is twofold. On the one side, a reformulated Maxwell system is broadly investigated in a metric-free environment by the use of the so-called ”bicomplex approach”. On the other side, a possible numerical implementation concerning the Finite Element Method is evaluated in a modern way by the use of discrete exterior calculus with focus on accuracy matters. Regarding the numerical accuracy evaluation, it is demonstrated that the presented approach yields a higher exactness in general when comparing it to formulations which are based on the Helmholtz equation. This thesis contributes generalized hypercomplex alternative representations of ordinary electrodynamic expressions to the topic of wave propagation. By the use of a direct formulation of the electric field in conjunction with the magnetic field, the computational accuracy of boundary value problems is improved. In order to achieve this increase of accuracy, an appropriate enhancement of the de Rham cohomology is proposed

    Hodge Laplacians on simplicial meshes and graphs

    Get PDF
    We present in this dissertation some developments in the discretizations of exterior calculus for problems posed on simplicial discretization (meshes) of geometric manifolds and analogous problems on abstract simplicial complexes. We are primarily interested in discretizations of elliptic type partial differential equations, and our model problem is the Hodge Laplacian Poisson problem on differential k-forms on n dimensional manifolds. One of our major contributions in this work is the computational quantification of the solution using the weak mixed formulation of this problem on simplicial meshes using discrete exterior calculus (DEC), and its comparisons with the solution due to a different discretization framework, namely, finite element exterior calculus (FEEC). Consequently, our important computational result is that the solution of the Poisson problem on different manifolds in two- and three-dimensions due to DEC recovers convergence properties on many sequences of refined meshes similar to that of FEEC. We also discuss some potential attempts for showing this convergence theoretically. In particular, we demonstrate that a certain formulation of a variational crimes approach that can be used for showing convergence for a generalized FEEC may not be directly applicable to DEC convergence in its current formulation. In order to perform computations using DEC, a key development that we present is exhibiting sign rules that allow for the computation of the discrete Hodge star operators in DEC on Delaunay meshes in a piecewise manner. Another aspect of computationally solving the Poisson problem using the mixed formulation with either DEC or FEEC requires knowing the solution to the corresponding Laplace's problem, namely, the harmonics. We present a least squares method for computing a basis for the space of such discrete harmonics via their isomorphism to cohomology. We also provide some numerics to quantify the efficiency of this solution in comparison with previously known methods. Finally, we demonstrate an application to obtain the ranking of pairwise comparison data. We model this data as edge weights on graphs with 3-cliques included and perform its Hodge decomposition by solving two least squares problems. An outcome of this exploration is also providing some computational evidence that algebraic multigrid linear solvers for the resulting linear systems on Erdős-Rényi random graphs and on Barabási-Albert graphs do not perform very well in comparison with iterative Krylov solvers

    Bordered Floer homology and the spectral sequence of a branched double cover II: the spectral sequences agree

    Full text link
    Given a link in the three-sphere, Ozsv\'ath and Szab\'o showed that there is a spectral sequence starting at the Khovanov homology of the link and converging to the Heegaard Floer homology of its branched double cover. The aim of this paper is to explicitly calculate this spectral sequence in terms of bordered Floer homology. There are two primary ingredients in this computation: an explicit calculation of bimodules associated to Dehn twists, and a general pairing theorem for polygons. The previous part (arXiv:1011.0499) focuses on computing the bimodules; this part focuses on the pairing theorem for polygons, in order to prove that the spectral sequence constructed in the previous part agrees with the one constructed by Ozsv\'ath and Szab\'o.Comment: 85 pages, 19 figures, v3: Version to appear in Journal of Topolog

    Aeronautical engineering: A continuing bibliography with indexes (supplement 216)

    Get PDF
    This bibliography lists 505 reports, articles and other documents introduced into the NASA scientific and technical information system in July, 1987
    • …
    corecore