6,093 research outputs found

    Consciousness operates beyond the timescale for discerning time intervals: implications for Q-mind theories and analysis of quantum decoherence in brain

    Get PDF
    This paper presents in details how the subjective time is constructed by the brain cortex via reading packets of information called "time labels", produced by the right basal ganglia that act as brain timekeeper. Psychophysiological experiments have measured the subjective "time quanta" to be 40 ms and show that consciousness operates beyond that scale - an important result having profound implications for the Q-mind theory. Although in most current mainstream biophysics research on cognitive processes, the brain is modelled as a neural network obeying classical physics, Penrose (1989, 1997) and others have argued that quantum mechanics may play an essential role, and that successful brain simulations can only be performed with a quantum computer. Tegmark (2000) showed that make-or-break issue for the quantum models of mind is whether the relevant degrees of freedom of the brain can be sufficiently isolated to retain their quantum coherence and tried to settle the issue with detailed calculations of the relevant decoherence rates. He concluded that the mind is classical rather than quantum system, however his reasoning is based on biological inconsistency. Here we present detailed exposition of molecular neurobiology and define the dynamical timescale of cognitive processes linked to consciousness to be 10-15 ps showing that macroscopic quantum coherent phenomena in brain are not ruled out, and even may provide insight in understanding life, information and consciousness

    M(atrix) Theory: Matrix Quantum Mechanics as a Fundamental Theory

    Get PDF
    A self-contained review is given of the matrix model of M-theory. The introductory part of the review is intended to be accessible to the general reader. M-theory is an eleven-dimensional quantum theory of gravity which is believed to underlie all superstring theories. This is the only candidate at present for a theory of fundamental physics which reconciles gravity and quantum field theory in a potentially realistic fashion. Evidence for the existence of M-theory is still only circumstantial---no complete background-independent formulation of the theory yet exists. Matrix theory was first developed as a regularized theory of a supersymmetric quantum membrane. More recently, the theory appeared in a different guise as the discrete light-cone quantization of M-theory in flat space. These two approaches to matrix theory are described in detail and compared. It is shown that matrix theory is a well-defined quantum theory which reduces to a supersymmetric theory of gravity at low energies. Although the fundamental degrees of freedom of matrix theory are essentially pointlike, it is shown that higher-dimensional fluctuating objects (branes) arise through the nonabelian structure of the matrix degrees of freedom. The problem of formulating matrix theory in a general space-time background is discussed, and the connections between matrix theory and other related models are reviewed.Comment: 56 pages, 3 figures, LaTeX, revtex style; v2: references adde

    Relaxation dynamics of fluid membranes

    Get PDF
    We study the effect of membrane viscosity in the dynamics of liquid membranes{possibly with free or internal boundaries{ driven by conservative forces (curvature elasticity and line tension) and dragged by the bulk dissipation of the ambient fluid and the friction occurring when the amphiphilic molecules move relative to each other. To this end, we formulate a continuum model which includes a new form of the governing equations for a two-dimensional viscous fluid moving on a curved, time-evolving surface. The effect of membrane viscosity has received very limited attention in previous continuum studies of the dynamics of fluid membranes, although recent coarse-grained discrete simulations suggest its importance. By applying our model to the study of vesiculation and membrane fusion in a simpli ed geometry, we conclude that membrane viscosity plays a dominant role in the relaxation dynamics of fluid membranes of sizes comparable to those found in eukaryotic cells, and is not negligible in many large synthetic systems of current interest

    Evolution of oil droplets in a chemorobotic platform

    Get PDF
    Evolution, once the preserve of biology, has been widely emulated in software, while physically embodied systems that can evolve have been limited to electronic and robotic devices and have never been artificially implemented in populations of physically interacting chemical entities. Herein we present a liquid-handling robot built with the aim of investigating the properties of oil droplets as a function of composition via an automated evolutionary process. The robot makes the droplets by mixing four different compounds in different ratios and placing them in a Petri dish after which they are recorded using a camera and the behaviour of the droplets analysed using image recognition software to give a fitness value. In separate experiments, the fitness function discriminates based on movement, division and vibration over 21 cycles, giving successive fitness increases. Analysis and theoretical modelling of the data yields fitness landscapes analogous to the genotype–phenotype correlations found in biological evolution. , Trevor Hinkley, James Ward Taylor Kliment Yane

    Ono: an open platform for social robotics

    Get PDF
    In recent times, the focal point of research in robotics has shifted from industrial ro- bots toward robots that interact with humans in an intuitive and safe manner. This evolution has resulted in the subfield of social robotics, which pertains to robots that function in a human environment and that can communicate with humans in an int- uitive way, e.g. with facial expressions. Social robots have the potential to impact many different aspects of our lives, but one particularly promising application is the use of robots in therapy, such as the treatment of children with autism. Unfortunately, many of the existing social robots are neither suited for practical use in therapy nor for large scale studies, mainly because they are expensive, one-of-a-kind robots that are hard to modify to suit a specific need. We created Ono, a social robotics platform, to tackle these issues. Ono is composed entirely from off-the-shelf components and cheap materials, and can be built at a local FabLab at the fraction of the cost of other robots. Ono is also entirely open source and the modular design further encourages modification and reuse of parts of the platform
    corecore