4,349 research outputs found

    Dominating sequences in grid-like and toroidal graphs

    Get PDF
    A longest sequence SS of distinct vertices of a graph GG such that each vertex of SS dominates some vertex that is not dominated by its preceding vertices, is called a Grundy dominating sequence; the length of SS is the Grundy domination number of GG. In this paper we study the Grundy domination number in the four standard graph products: the Cartesian, the lexicographic, the direct, and the strong product. For each of the products we present a lower bound for the Grundy domination number which turns out to be exact for the lexicographic product and is conjectured to be exact for the strong product. In most of the cases exact Grundy domination numbers are determined for products of paths and/or cycles.Comment: 17 pages 3 figure

    On the extremal properties of the average eccentricity

    Get PDF
    The eccentricity of a vertex is the maximum distance from it to another vertex and the average eccentricity ecc(G)ecc (G) of a graph GG is the mean value of eccentricities of all vertices of GG. The average eccentricity is deeply connected with a topological descriptor called the eccentric connectivity index, defined as a sum of products of vertex degrees and eccentricities. In this paper we analyze extremal properties of the average eccentricity, introducing two graph transformations that increase or decrease ecc(G)ecc (G). Furthermore, we resolve four conjectures, obtained by the system AutoGraphiX, about the average eccentricity and other graph parameters (the clique number, the Randi\' c index and the independence number), refute one AutoGraphiX conjecture about the average eccentricity and the minimum vertex degree and correct one AutoGraphiX conjecture about the domination number.Comment: 15 pages, 3 figure

    Grundy dominating sequences and zero forcing sets

    Get PDF
    In a graph GG a sequence v1,v2,…,vmv_1,v_2,\dots,v_m of vertices is Grundy dominating if for all 2≤i≤m2\le i \le m we have N[vi]⊈∪j=1i−1N[vj]N[v_i]\not\subseteq \cup_{j=1}^{i-1}N[v_j] and is Grundy total dominating if for all 2≤i≤m2\le i \le m we have N(vi)⊈∪j=1i−1N(vj)N(v_i)\not\subseteq \cup_{j=1}^{i-1}N(v_j). The length of the longest Grundy (total) dominating sequence has been studied by several authors. In this paper we introduce two similar concepts when the requirement on the neighborhoods is changed to N(vi)⊈∪j=1i−1N[vj]N(v_i)\not\subseteq \cup_{j=1}^{i-1}N[v_j] or N[vi]⊈∪j=1i−1N(vj)N[v_i]\not\subseteq \cup_{j=1}^{i-1}N(v_j). In the former case we establish a strong connection to the zero forcing number of a graph, while we determine the complexity of the decision problem in the latter case. We also study the relationships among the four concepts, and discuss their computational complexities

    Investigations in the semi-strong product of graphs and bootstrap percolation

    Get PDF
    The semi-strong product of graphs G and H is a way of forming a new graph from the graphs G and H. The vertex set of the semi-strong product is the Cartesian product of the vertex sets of G and H, V(G) x V(H). The edges of the semi-strong product are determined as follows: (g1,h1)(g2,h2) is an edge of the product whenever g1g2 is an edge of G and h1h2 is an edge of H or g1 = g2 and h1h2 is an edge of H. A natural subject for investigation is to determine properties of the semi-strong product in terms of those properties of its factors. We investigate distance, independence, matching, and domination in the semi-strong product Bootstrap Percolation is a process defined on a graph. We begin with an initial set of infected vertices. In each subsequent round, uninfected vertices become infected if they are adjacent to at least r infected vertices. Once infected, vertices remain infected. The parameter r is called the percolation threshold. When G is finite, the infection either stops at a proper subset of G or all of V(G) becomes infected. If all of V(G) eventually becomes infected, then we say that the infection percolates and we call the initial set of infected vertices a percolating set. The cardinality of a minimum percolating set of G with percolation threshold r is denoted m(G,r). We determine m(G,r) for certain Kneser graphs and bipartite Kneser graphs

    Master index of volumes 161–170

    Get PDF
    • …
    corecore