357,193 research outputs found

    Vortex-vortex control in exciton-polariton condensates

    Full text link
    Vortices are widely studied in fields ranging from nonlinear optics to magnetic systems and superconductors. A vortex carries a binary information corresponding to its topological charge, `plus' or `minus', that can be used for information storage and processing. In spatially extended optical and condensed many-particle systems, achieving full control over vortex formation and its charge is particularly difficult and is not easily extended to systems of multiple vortices. Here we demonstrate the optical creation of multiplets of phase-locked vortices in polariton condensates using off-resonant excitation with ring-shaped pump beams. We find that the vorticity of one vortex can be controlled solely using the phase-locking with other nearby vortices. Using this mechanism, we demonstrate how an existing vortex with a specific topological charge can be inverted to the oppositely charged state, and how the charge state of one reference vortex can be copied to a neighboring vortex. This way we can optically encode any set of binary information onto a chain of vortices. We further show that this information can be modified later by using the possibility to address and manipulate each vortex in the chain individually.Comment: Physical Review B, in pres

    Quantization effects and convergence properties of rigid formation control systems with quantized distance measurements

    Get PDF
    In this paper, we discuss quantization effects in rigid formation control systems when target formations are described by inter-agent distances. Because of practical sensing and measurement constraints, we consider in this paper distance measurements in their quantized forms. We show that under gradient-based formation control, in the case of uniform quantization, the distance errors converge locally to a bounded set whose size depends on the quantization error, while in the case of logarithmic quantization, all distance errors converge locally to zero. A special quantizer involving the signum function is then considered with which all agents can only measure coarse distances in terms of binary information. In this case, the formation converges locally to a target formation within a finite time. Lastly, we discuss the effect of asymmetric uniform quantization on rigid formation control.Comment: 29 pages, International Journal of Robust and Nonlinear Control 201

    Detection and Characterization of Planets in Binary and Multiple Systems

    Full text link
    Moderately close binaries are a special class of targets for planet searches. From a theoretical standpoint, their hospitality to giant planets is uncertain and debated. From an observational standpoint, many of these systems present technical difficulties for precise radial-velocity measurements and classical Doppler surveys avoid them accordingly. In spite of these adverse factors, present data support the idea that giant planets residing in binary and hierarchical systems provide unique observational constraints on the processes of planet formation and evolution. The interest and the importance of including various types of binary stars in extrasolar planet studies have thus grown over time and significant efforts have recently been put into: (i) searching for stellar companions to the known planet-host stars using direct imaging, and (ii) extending Doppler planet searches to spectroscopic and moderately close visual binaries. In this contribution we review the observational progresses made over the past years to detect and study extrasolar planets in binary systems, putting special emphasis on the two developments mentioned above.Comment: 20 pages, 4 figures, review to appear in Extrasolar Planets in Multi-Body Systems: Theory and Observations, ed. K. Gozdziewski, A. Niedzielski, and J. Schneider, EAS Publications Serie

    Causality and defect formation in the dynamics of an engineered quantum phase transition in a coupled binary Bose-Einstein condensate

    Full text link
    Continuous phase transitions occur in a wide range of physical systems, and provide a context for the study of non-equilibrium dynamics and the formation of topological defects. The Kibble-Zurek (KZ) mechanism predicts the scaling of the resulting density of defects as a function of the quench rate through a critical point, and this can provide an estimate of the critical exponents of a phase transition. In this work we extend our previous study of the miscible-immiscible phase transition of a binary Bose-Einstein condensate (BEC) composed of two hyperfine states in which the spin dynamics are confined to one dimension [J. Sabbatini et al., Phys. Rev. Lett. 107, 230402 (2011)]. The transition is engineered by controlling a Hamiltonian quench of the coupling amplitude of the two hyperfine states, and results in the formation of a random pattern of spatial domains. Using the numerical truncated Wigner phase space method, we show that in a ring BEC the number of domains formed in the phase transitions scales as predicted by the KZ theory. We also consider the same experiment performed with a harmonically trapped BEC, and investigate how the density inhomogeneity modifies the dynamics of the phase transition and the KZ scaling law for the number of domains. We then make use of the symmetry between inhomogeneous phase transitions in anisotropic systems, and an inhomogeneous quench in a homogeneous system, to engineer coupling quenches that allow us to quantify several aspects of inhomogeneous phase transitions. In particular, we quantify the effect of causality in the propagation of the phase transition front on the resulting formation of domain walls, and find indications that the density of defects is determined during the impulse to adiabatic transition after the crossing of the critical point.Comment: 23 pages, 10 figures. Minor corrections, typos, additional referenc

    Two computational primitives for algorithmic self-assembly: Copying and counting

    Get PDF
    Copying and counting are useful primitive operations for computation and construction. We have made DNA crystals that copy and crystals that count as they grow. For counting, 16 oligonucleotides assemble into four DNA Wang tiles that subsequently crystallize on a polymeric nucleating scaffold strand, arranging themselves in a binary counting pattern that could serve as a template for a molecular electronic demultiplexing circuit. Although the yield of counting crystals is low, and per-tile error rates in such crystals is roughly 10%, this work demonstrates the potential of algorithmic self-assembly to create complex nanoscale patterns of technological interest. A subset of the tiles for counting form information-bearing DNA tubes that copy bit strings from layer to layer along their length

    Quantifying Triadic Closure in Multi-Edge Social Networks

    Full text link
    Multi-edge networks capture repeated interactions between individuals. In social networks, such edges often form closed triangles, or triads. Standard approaches to measure this triadic closure, however, fail for multi-edge networks, because they do not consider that triads can be formed by edges of different multiplicity. We propose a novel measure of triadic closure for multi-edge networks of social interactions based on a shared partner statistic. We demonstrate that our operalization is able to detect meaningful closure in synthetic and empirical multi-edge networks, where common approaches fail. This is a cornerstone in driving inferential network analyses from the analysis of binary networks towards the analyses of multi-edge and weighted networks, which offer a more realistic representation of social interactions and relations.Comment: 19 pages, 5 figures, 6 table
    • …
    corecore