9,419 research outputs found

    Guaranteed-cost consensus for multiagent networks with Lipschitz nonlinear dynamics and switching topologies

    Full text link
    Guaranteed-cost consensus for high-order nonlinear multi-agent networks with switching topologies is investigated. By constructing a time-varying nonsingular matrix with a specific structure, the whole dynamics of multi-agent networks is decomposed into the consensus and disagreement parts with nonlinear terms, which is the key challenge to be dealt with. An explicit expression of the consensus dynamics, which contains the nonlinear term, is given and its initial state is determined. Furthermore, by the structure property of the time-varying nonsingular transformation matrix and the Lipschitz condition, the impacts of the nonlinear term on the disagreement dynamics are linearized and the gain matrix of the consensus protocol is determined on the basis of the Riccati equation. Moreover, an approach to minimize the guaranteed cost is given in terms of linear matrix inequalities. Finally, the numerical simulation is shown to demonstrate the effectiveness of theoretical results.Comment: 16 page

    Synchronized output regulation of nonlinear multi-agent systems

    Full text link
    This paper considers the synchronized output regulation (SOR) problem of nonlinear multi-agent systems with switching graph. The SOR means that all agents regulate their outputs to synchronize on the output of a predefined common exosystem. Each agent constructs its local exosystem with the same dynamics as that of the common exosystem and exchanges the state information of the local exosystem. It is shown that the SOR is solvable under the assumptions same as that for nonlinear output regulation of a single agent, if the switching graph satisfies the bounded interconnectivity times condition. Both state feedback and output feedback are addressed. A numerical simulation is made to show the efficacy of the analytic results.Comment: 20 pages, 2 figures, submitted to International Journal of Contro

    Coordination of Multi-Agent Systems under Switching Topologies via Disturbance Observer Based Approach

    Full text link
    In this paper, a leader-following coordination problem of heterogeneous multi-agent systems is considered under switching topologies where each agent is subject to some local (unbounded) disturbances. While these unknown disturbances may disrupt the performance of agents, a disturbance observer based approach is employed to estimate and reject them. Varying communication topologies are also taken into consideration, and their byproduct difficulties are overcome by using common Lyapunov function techniques. According to the available information in difference cases, two disturbance observer based protocols are proposed to solve this problem. Their effectiveness is verified by simulations.Comment: 12 pages, 4 figures, 2 table

    Robust Consensus Tracking of Heterogeneous Multi-Agent Systems under Switching Topologies

    Full text link
    In this paper, we consider a robust consensus tracking problem of heterogeneous multi-agent systems with time-varying interconnection topologies. Based on common Lyapunov function and internal model techniques, both state and output feedback control laws are derived to solve this problem. The proposed design is robust by admitting some parameter uncertainties in the multi-agent system.Comment: 11 pages, 4 figures, accepte

    Dynamic Output Feedback Guaranteed-Cost Synchronization for Multiagent Networks with Given Cost Budgets

    Full text link
    The current paper addresses the distributed guaranteed-cost synchronization problems for general high-order linear multiagent networks. Existing works on the guaranteed-cost synchronization usually require all state information of neighboring agents and cannot give the cost budget previously. For both leaderless and leader-following interaction topologies, the current paper firstly proposes a dynamic output feedback synchronization protocol with guaranteed-cost constraints, which can realize the tradeoff design between the energy consumption and the synchronization regulation performance with the given cost budget. Then, according to different structure features of interaction topologies, leaderless and leader-following guaranteed-cost synchronization analysis and design criteria are presented, respectively, and an algorithm is proposed to deal with the impacts of nonlinear terms by using both synchronization analysis and design criteria. Especially, an explicit expression of the synchronization function is shown for leaderless cases, which is independent of protocol states and the given cost budget. Finally, numerical examples are presented to demonstrate theoretical results.Comment: 12 page

    A hybrid approach for cooperative output regulation with sampled compensator

    Full text link
    This work investigates the cooperative output regulation problem of linear multi-agent systems with hybrid sampled data control. Due to the limited data sensing and communication, in many practical situations, only sampled data are available for the cooperation of multi-agent systems. To overcome this problem, a distributed hybrid controller is presented for the cooperative output regulation, and cooperative output regulation is achieved by well designed state feedback law. Then it proposed a method for the designing of sampled data controller to solve the cooperative output regulation problem with continuous linear systems and discrete-time communication data. Finally, numerical simulation example for cooperative tracking and a simulation example for optimal control of micro-grids are proposed to illustrate the result of the sampled data control law

    On Distributed Internal Model Principle for Output Regulation over Time-Varying Networks of Linear Heterogeneous Agents

    Full text link
    We study a multi-agent output regulation problem, where not all agents have access to the exosystem's dynamics. We propose a distributed controller that solves the problem for linear, heterogeneous, and uncertain agent dynamics as well as time-varying directed networks. The distributed controller consists of two parts: (1) an exosystem generator that creates a local copy of the exosystem dynamics by using consensus protocols, and (2) a dynamic compensator that uses (again) consensus to approach the internal model of the exosystem and thereby achieves perfect output regulation. Our approach leverages methods from internal model based controller synthesis, multi-agent consensus over directed networks, and stability of time-varying linear systems; the derived result is an adaptation of the (centralized) internal model principle to the distributed, networked setting

    Coordinated Output Regulation of Heterogeneous Linear Systems under Switching Topologies

    Full text link
    This paper constructs a framework to describe and study the coordinated output regulation problem for multiple heterogeneous linear systems. Each agent is modeled as a general linear multiple-input multiple-output system with an autonomous exosystem which represents the individual offset from the group reference for the agent. The multi-agent system as a whole has a group exogenous state which represents the tracking reference for the whole group. Under the constraints that the group exogenous output is only locally available to each agent and that the agents have only access to their neighbors' information, we propose observer-based feedback controllers to solve the coordinated output regulation problem using output feedback information. A high-gain approach is used and the information interactions are allowed to be switched over a finite set of fixed networks containing both graphs that have a directed spanning tree and graphs that do not. The fundamental relationship between the information interactions, the dwell time, the non-identical dynamics of different agents, and the high-gain parameters is given. Simulations are shown to validate the theoretical results

    Cooperative Control of Linear Multi-Agent Systems via Distributed Output Regulation and Transient Synchronization

    Full text link
    A wide range of multi-agent coordination problems including reference tracking and disturbance rejection requirements can be formulated as a cooperative output regulation problem. The general framework captures typical problems such as output synchronization, leader-follower synchronization, and many more. In the present paper, we propose a novel distributed regulator for groups of identical and non-identical linear agents. We consider global external signals affecting all agents and local external signals affecting only individual agents in the group. Both signal types may contain references and disturbances. Our main contribution is a novel coupling among the agents based on their transient state components or estimates thereof in the output feedback case. This coupling achieves transient synchronization in order to improve the cooperative behavior of the group in transient phases and guarantee a desired decay rate of the synchronization error. This leads to a cooperative reaction of the group on local disturbances acting on individual agents. The effectiveness of the proposed distributed regulator is illustrated by a vehicle platooning example and a coordination example for a group of four non-identical 3-DoF helicopter models

    Cooperative output regulation of multi-agent network systems with dynamic edges

    Full text link
    This paper investigates a new class of linear multi-agent network systems, in which nodes are coupled by dynamic edges in the sense that each edge has a dynamic system attached as well. The outputs of the edge dynamic systems form the external inputs of the node dynamic systems, which are termed "neighboring inputs" representing the coupling actions between nodes. The outputs of the node dynamic systems are the inputs of the edge dynamic systems. Several cooperative output regulation problems are posed, including output synchronization, output cooperation and master-slave output cooperation. Output cooperation is specified as making the neighboring input, a weighted sum of edge outputs, track a predefined trajectory by cooperation of node outputs. Distributed cooperative output regulation controllers depending on local state and neighboring inputs are presented, which are designed by combining feedback passivity theories and the internal model principle. A simulation example on the cooperative current control of an electrical network illustrates the potential applications of the analytical results.Comment: 17 pages, 5 figure
    corecore