4,045 research outputs found

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Managing a Fleet of Autonomous Mobile Robots (AMR) using Cloud Robotics Platform

    Get PDF
    In this paper, we provide details of implementing a system for managing a fleet of autonomous mobile robots (AMR) operating in a factory or a warehouse premise. While the robots are themselves autonomous in its motion and obstacle avoidance capability, the target destination for each robot is provided by a global planner. The global planner and the ground vehicles (robots) constitute a multi agent system (MAS) which communicate with each other over a wireless network. Three different approaches are explored for implementation. The first two approaches make use of the distributed computing based Networked Robotics architecture and communication framework of Robot Operating System (ROS) itself while the third approach uses Rapyuta Cloud Robotics framework for this implementation. The comparative performance of these approaches are analyzed through simulation as well as real world experiment with actual robots. These analyses provide an in-depth understanding of the inner working of the Cloud Robotics Platform in contrast to the usual ROS framework. The insight gained through this exercise will be valuable for students as well as practicing engineers interested in implementing similar systems else where. In the process, we also identify few critical limitations of the current Rapyuta platform and provide suggestions to overcome them.Comment: 14 pages, 15 figures, journal pape

    Learning an Industrial Dross Skimming Task Using LfD Framework

    Get PDF

    ๋ถ„์‚ฐ ์ œ์•ฝํ•˜์—์„œ ์›๊ฒฉ ์ œ์–ด๋˜๋Š” ๋‹ค์ˆ˜์˜ ๋…ผํ™€๋กœ๋…ธ๋ฏน ์ด๋™ํ˜• ๋กœ๋ด‡ ๋Œ€ํ˜• ์žฌ๊ตฌ์„ฑ ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2019. 2. ์ด๋™์ค€.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ณ€ํ™”ํ•˜๋Š” ์ฃผํ–‰ ํ™˜๊ฒฝ์—์„œ ๋ถ„์‚ฐ ์ œ์•ฝ ํ•˜์— ๋‹ค์ˆ˜์˜ ์›๊ฒฉ์œผ๋กœ ์ œ์–ด๋˜๋Š” ๋…ผํ™€๋กœ๋…ธ๋ฏน ์ด๋™ํ˜• ๋กœ๋ด‡ ๋Œ€ํ˜• ์žฌ๊ตฌ์„ฑ ์ œ์–ด์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์„ผ์‹ฑ๊ณผ ์ปดํ“จํŒ… ๋Šฅ๋ ฅ์ด ๊ฐ–์ถ”์–ด์ง„ ์˜จ๋ณด๋“œ ์‹œ์Šคํ…œ ๋กœ๋ด‡๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ์ตœ๊ทผ ๊ฐœ๋ฐœ๋œ ์˜ˆ์ธก ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ๋ฒ•์„ ์ ์šฉ, ํšจ์œจ์ ์ธ ๊ตฐ์ง‘ ๋กœ๋ด‡์˜ ์›๊ฒฉ ์ œ์–ด๊ฐ€ ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ์ž˜ ์•Œ๋ ค์ง„ ๋…ผํ™€๋กœ๋…ธ๋ฏน ํŒจ์‹œ๋ธŒ ๋””์ปดํฌ์ง€์…˜ ๊ธฐ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋Œ€ํ˜• ๋ณ€๊ฒฝ์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ์ƒˆ๋กœ์šด ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”๊ฐ€, ๋Œ€ํ˜• ๋ณ€๊ฒฝ๊ฐ„ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•ด ํŒŒ์•…ํ•˜๊ณ  ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํฌํ…์…œ ํ•„๋“œ๋ฅผ ํ™œ์šฉํ•˜์˜€๋‹ค. n๋Œ€์˜ ๋กœ๋ด‡์œผ๋กœ ๋‹ค์–‘ํ•œ ๋Œ€ํ˜• ๋ณ€๊ฒฝ์ด ๊ฐ€๋Šฅํ† ๋ก ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์„ ์กฐ์„ฑ, 39๋Œ€์˜ ํƒฑํฌ๋ฅผ ์ด์šฉํ•˜์—ฌ์—ฌ 5๊ฐ€์ง€์˜ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๋Œ€ํ˜•์œผ๋กœ์˜ ๋ณ€ํ™˜์„ ์ƒˆ๋กœ์ด ์ œ์‹œํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์—ฌ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์‹ค์ œ ๋กœ๋ด‡ 3๋Œ€๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํšจ์šฉ์„ฑ์— ๋Œ€ํ•œ ์‹คํ—˜์„ ํ•„๋‘๋กœ ์ข์€ ๊ธธ๋ชฉ, ๊ฐœํ™œ์ง€ ๋“ฑ ์—ฐ์†์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ํ™˜๊ฒฝ ์†์—์„œ์˜ ๊ตฌ๋™์„ ํ†ตํ•ด ์ตœ์ข…์ ์œผ๋กœ ์ œ์‹œํ•œ ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํƒ€๋‹น์„ฑ์— ๋Œ€ํ•ด ๊ฒ€์ฆํ•˜์˜€๋‹ค.We propose a novel framework for formation reconguration of multiple nonholonomic wheeled mobile robots (WMRs) in the changing driving environment. We utilize an onboard system of WMRs with the capability of sensing and computing. Each WMR has the same computing power for visualizing the driving environment, handling the sensing information and calculating the control action. One of the WMRs is the leader with the FPV camera and SLAM, while others with monocular cameras with limited FoV, as the followers, keep a certain desired formation during driving in a distributed manner. We set two control objectives, one is group driving and the other is holding the shape of the formation. We have to capture the control objectives separately and simultaneously, we make the best use of nonholonomic passive decomposition to split the WMRs' kinematics into those of the formation maintaining and group driving. The repulsive potential function to prevent the collision among WMRs and attractive potential function to restrict the boundary of follower WMRs' moving space due to limited FoV range of the monocular cameras while switching their formation are also used. Simulation with 39 tanks and experiments with three WMRs are also performed to verify the proposed framework.Acknowledgements iii List of Figures vii Abbreviations ix 1 Introduction 1 2 Formation Reconguration Control Design 5 2.1 Nonholonomic Passive Decomposition . . . . . . . . . . . . . . . 5 2.2 Attractive and Repulsive Potential Function . . . . . . . . . . . . 10 2.3 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Estimation and Predictive Display 20 3.1 Distributed Pose Estimation . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 EKF Pose Estimation of Leader WMR . . . . . . . . . . . 20 3.1.2 EKF Pose Estimation of Follower WMRs . . . . . . . . . 22 3.2 Predictive Display for Distributed WMRs Teleoperation . . . . . 23 4 Experiment 27 4.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Demonstrate the Proposed Algorithm . . . . . . . . . . . . . . . 30 4.3 Teleoperation Experiment with the Algorithm . . . . . . . . . . . 33 5 Conclusion 40Maste

    Modeling the Impact of Operator Trust on Performance in Multiple Robot Control,

    Get PDF
    We developed a system dynamics model to simulate the impact of operator trust on performance in multiple robot control. Analysis of a simulated urban search and rescue experiment showed that operators decided to manually control the robots when they lost trust in the autonomous planner that was directing the robots. Operators who rarely used manual control performed the worst. However, the operators who most frequently used manual control reported higher workload and did not perform any better than operators with moderate manual control usage. Based on these findings, we implemented a model where trust and performance form a feedback loop, in which operators perceive the performance of the system, calibrate their trust, and adjust their control of the robots. A second feedback loop incorporates the impact of trust on cognitive workload and system performance. The model was able to replicate the quantitative performance of three groups of operators within 2.3%. This model could help us gain a greater understanding of how operators build and lose trust in automation and the impact of those changes in trust on performance and workload, which is crucial to the development of future systems involving humanautomation collaboration.This research is sponsored by the Office of Naval Research and the Air Force Office of Scientific Research

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Modeling the Impact of Operator Trust on Performance in Multiple Robot Control

    Get PDF
    We developed a system dynamics model to simulate the impact of operator trust on performance in multiple robot control. Analysis of a simulated urban search and rescue experiment showed that operators decided to manually control the robots when they lost trust in the autonomous planner that was directing the robots. Operators who rarely used manual control performed the worst. However, the operators who most frequently used manual control reported higher workload and did not perform any better than operators with moderate manual control usage. Based on these findings, we implemented a model where trust and performance form a feedback loop, in which operators perceive the performance of the system, calibrate their trust, and adjust their control of the robots. A second feedback loop incorporates the impact of trust on cognitive workload and system performance. The model was able to replicate the quantitative performance of three groups of operators within 2.3%. This model could help us gain a greater understanding of how operators build and lose trust in automation and the impact of those changes in trust on performance and workload, which is crucial to the development of future systems involving human-automation collaboration

    Autonomous and Intelligent Mobile Systems based on Multi-Agent Systems

    Get PDF
    • โ€ฆ
    corecore