144 research outputs found

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    A survey of formation control and motion planning of multiple unmanned vehicles

    Get PDF
    The increasing deployment of multiple unmanned vehicles systems has generated large research interest in recent decades. This paper therefore provides a detailed survey to review a range of techniques related to the operation of multi-vehicle systems in different environmental domains, including land based, aerospace and marine with the specific focuses placed on formation control and cooperative motion planning. Differing from other related papers, this paper pays a special attention to the collision avoidance problem and specifically discusses and reviews those methods that adopt flexible formation shape to achieve collision avoidance for multi-vehicle systems. In the conclusions, some open research areas with suggested technologies have been proposed to facilitate the future research development

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:• Robots• Control and Intelligence• Sensing• Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:• Robots• Control and Intelligence• Sensing• Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area

    Fault-tolerant Synchronization of Autonomous Underwater Vehicles

    Get PDF
    The main objective of this thesis is to develop a fault-tolerant and reconfigurable synchronization scheme based on model-based control protocols for stern and sail hydroplanes that are employed as actuators in the attitude control subsystem (ACS) of an autonomous underwater vehicle (AUV). In this thesis two control approaches are considered for synchronization, namely i) state feedback synchronization, and ii) output feedback synchronization. Both problems are tackled by proposing a passive control approach as well as an active reconfiguration (re-designing the control gains). For the ”state feedback” synchronization scheme, to achieve consensus the relative/absolute measurements of the AUV’s states (position and attitude) are available. The states of a longitudinal model of an AUV are mainly heave, pitch, and their associated rates. For the state feedback problem we employ a static protocol, and it is shown that the multi-agent system will synchronize in the stochastic mean square sense in the presence of measurement noise. However, the resulting performance index defined as the accumulated sum of variations of control inputs and synchronization errors is high. To deal with this problem, Kalman filtering is used for states estimation that are used in synchronization protocol. Moreover, the e�ffects of parameter uncertainty of the agent’s dynamics are also investigated through simulation results. By employing the static protocol it is demonstrated that when a loss of e�ffectiveness (LOE) or float fault occurs the synchronization can still be achieved under some conditions. Finally, one of the main problems that is tackled in the state feedback scenario is our proposed proportional-integral (PI) control methodology to deal with the lock in place (LIP) fault. It is shown that if the LIP fault occurs, by employing a PI protocol the synchronization could still be achieved. Finally, our proposed dynamic synchronization protocol methodology is applied given that the fault (LOE/float) severity is known. Since after a fault occurrence the agents become heterogeneous, employing the dynamic scheme makes the task of reconfiguration (redesigning the gains) more e�ffective. For the ”output feedback” synchronization approach, to achieve consensus relative/absolute measurements of the AUV’s states except the pitch rate are available. For the output feedback problem a dynamic protocol through a Luenberger observer is first employed for state estimation and the synchronization achievement is demonstrated. Then, a system under state and measurement noise is considered, and it is shown that by employing a Kalman filter for the state estimation; the multi-agent system will synchronize in the stochastic mean square sense. Furthermore, by employing the static protocol, it is shown that when a LOE/float fault occurs the synchronization is still achieved under certain conditions. Finally, one of the main problems that is tackled in the output feedback scenario is our proposed dynamic controller methodology. The results of this scheme are compared with another approach that exploits both dynamic controller and dynamic observer. The former approach has less computational e�ort and results in more a robust control with respect to the actuator fault. The reason is that the later method employs an observer that uses the control input matrix information. When fault occurs, this information will not be correct any more. However, if there is a need to redesign the synchronization gains under faulty scenario, the later methodology is preferred. The reason is that the former approach becomes complicated when there is a fault even though its severity is known. In this thesis, fault-tolerant synchronization of autonomous underwater vehicles is considered. In the first chapter a brief introduction on the motivation, problem definition, objectives and the methodologies that are used in the dissertation are discussed. A literature review on research dedicated to synchronization, fault diagnosis, and fault-tolerant control is provided. In Chapter 2, a through literature review on unmanned underwater vehicles is covered. It also comprises a comprehensive background information and definitions including algebraic graph theory, matrix theory, and fault modeling. In the problem statement, the two main problems in this thesis, namely state feedback synchronization and output feedback synchronization are discussed. Chapters 3 and 4 will cover these two problems, their solutions, and the corresponding simulation results that are provided. Finally, Chapter 5 includes a discussion of conclusions and future work
    • …
    corecore