1,411 research outputs found

    Graph rigidity-based formation control of planar multi-agent systems

    Get PDF
    A multi-agent system is a network of interacting agents that collectively perform a complex task. This dissertation is concerned with the decentralized formation control of multi-agent systems moving in the plane. The formation problem is defined as designing control inputs for the agents so that they form and maintain a pre-defined, planar geometric shape. The focus is on three related problems with increasing level of complexity: formation acquisition, formation maneuvering, and target interception. Three different dynamic models, also with increasing level of complexity, are considered for the motion of the agents: the single-integrator model, the double-integrator model, and the full mechanical dynamic model. Rigid graph theory and Lyapunov theory are the primary tools utilized in this work for solving the aforementioned formation problems for the three models. The backstepping control technique also plays a key role in the cases of the double-integrator and full dynamic models. Starting with the single-integrator model, a basic formation acquisition controller is proposed that is only a function of the relative position of agents in an infinitesimally and minimally rigid graph. A Lyapunov analysis shows that the origin of the inter-agent distance error system is exponentially stable. It is then shown how an extra term can be added to the controller to enable formation maneuvering or target interception. The three controllers for the single-integrator model are used as a stepping stone and extended to the double-integrator model with the aid of backstepping. Finally, an actuator-level, formation acquisition control law is developed for multiple robotic vehicles that accounts for the vehicle dynamics. Specifically, a class of underactuated vehicles modeled by Euler-Lagrange-like equations is considered. The backstepping technique is again employed while exploiting the structural properties of the system dynamics. Computer simulations are provided throughout the dissertation to show the proposed control laws in action

    Decentralized MPC based Obstacle Avoidance for Multi-Robot Target Tracking Scenarios

    Full text link
    In this work, we consider the problem of decentralized multi-robot target tracking and obstacle avoidance in dynamic environments. Each robot executes a local motion planning algorithm which is based on model predictive control (MPC). The planner is designed as a quadratic program, subject to constraints on robot dynamics and obstacle avoidance. Repulsive potential field functions are employed to avoid obstacles. The novelty of our approach lies in embedding these non-linear potential field functions as constraints within a convex optimization framework. Our method convexifies non-convex constraints and dependencies, by replacing them as pre-computed external input forces in robot dynamics. The proposed algorithm additionally incorporates different methods to avoid field local minima problems associated with using potential field functions in planning. The motion planner does not enforce predefined trajectories or any formation geometry on the robots and is a comprehensive solution for cooperative obstacle avoidance in the context of multi-robot target tracking. We perform simulation studies in different environmental scenarios to showcase the convergence and efficacy of the proposed algorithm. Video of simulation studies: \url{https://youtu.be/umkdm82Tt0M

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Bearing-based formation control with second-order agent dynamics

    Full text link
    We consider the distributed formation control problem for a network of agents using visual measurements. We propose solutions that are based on bearing (and optionally distance) measurements, and agents with double integrator dynamics. We assume that a subset of the agents can track, in addition to their neighbors, a set of static features in the environment. These features are not considered to be part of the formation, but they are used to asymptotically control the velocity of the agents. We analyze the convergence properties of the proposed protocols analytically and through simulations.Published versionSupporting documentatio

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Formation Control of Nonholonomic Multi-Agent Systems

    Get PDF
    This dissertation is concerned with the formation control problem of multiple agents modeled as nonholonomic wheeled mobile robots. Both kinematic and dynamic robot models are considered. Solutions are presented for a class of formation problems that include formation, maneuvering, and flocking. Graph theory and nonlinear systems theory are the key tools used in the design and stability analysis of the proposed control schemes. Simulation and/or experimental results are presented to illustrate the performance of the controllers. In the first part, we present a leader-follower type solution to the formation maneuvering problem. The solution is based on the graph that models the coordination among the robots being a spanning tree. Our control law incorporates two types of position errors: individual tracking errors and coordination errors for leader-follower pairs in the spanning tree. The control ensures that the robots globally acquire a given planar formation while the formation as a whole globally tracks a desired trajectory, both with uniformly ultimately bounded errors. The control law is first designed at the kinematic level and then extended to the dynamic level. In the latter, we consider that parametric uncertainty exists in the equations of motion. These uncertainties are accounted for by employing an adaptive control scheme. In the second part, we design a distance-based control scheme for the flocking of the nonholonomic agents under the assumption that the desired flocking velocity is known to all agents. The control law is designed at the kinematic level and is based on the rigidity properties of the graph modeling the sensing/control interactions among the robots. A simple input transformation is used to facilitate the control design by converting the nonholonomic model into the single-integrator equation. The resulting control ensures exponential convergence to the desired formation while the formation maneuvers according to a desired, time-varying translational velocity. In the third part, we extend the previous flocking control framework to the case where only a subset of the agents know the desired flocking velocity. The resulting controllers include distributed observers to estimate the unknown quantities. The theory of interconnected systems is used to analyze the stability of the observer-controller system

    Bearing rigidity theory and its applications for control and estimation of network systems: Life beyond distance rigidity

    Get PDF
    Distributed control and location estimation of multiagent systems have received tremendous research attention in recent years because of their potential across many application domains [1], [2]. The term agent can represent a sensor, autonomous vehicle, or any general dynamical system. Multiagent systems are attractive because of their robustness against system failure, ability to adapt to dynamic and uncertain environments, and economic advantages compared to the implementation of more expensive monolithic systems

    Sensor Planning and Control in a Dynamic Environment

    Get PDF
    This paper presents an approach to the problem of controlling the configuration of a team of mobile agents equipped with cameras so as to optimize the quality of the estimates derived from their measurements. The issue of optimizing the robots\u27 configuration is particularly important in the context of teams equipped with vision sensors since most estimation schemes of interest will involve some form of triangulation. We provide a theoretical framework for tackling the sensor planning problem and a practical computational strategy, inspired by work on particle filtering, for implementing the approach. We extend our previous work by showing how modeled system dynamics and configuration space obstacles can be handled. These ideas have been demonstrated both in simulation and on actual robotic platforms. The results indicate that the framework is able to solve fairly difficult sensor planning problems online without requiring excessive amounts of computational resources
    • …
    corecore