2,992 research outputs found

    Formation Navigation and Relative Localisation of Multi-Robot Systems

    Get PDF
    When proceeding from single to multiple robots, cooperative action is one of the most relevant topics. The domain of robotic security systems contains typical applications for a multi-robot system (MRS). Possible scenarios are safety and security issues on airports, harbours, large industry plants or museums. Additionally, the field of environmental supervision is an up-coming issue. Inherent to these applications is the need for an organised and coordinated navigation of the robots, and a vital prerequisite for any coordinated movements is a good localisation. This dissertation will present novel approaches to the problems of formation navigation and relative localisation with multiple ground-based mobile robots. It also looks into the question what kind of metric is applicable for multi-robot navigation problems. Thereby, the focus of this work will be on aspects of 1. coordinated navigation and movement A new potential-field-based approach to formation navigation is presented. In contradiction to classical potential-field-based formation approaches, the proposed method also uses the orientation between neighbours in the formation. Consequently, each robot has a designated position within the formation. Therefore, the new method is called directed potential field approach. Extensive experiments prove that the method is capable of generating all kinds of formation shapes, even in the presence of dense obstacles. All tests have been conducted with simulated and real robots and successfully guided the robot formation through environments with varying obstacle configurations. In comparison, the nondirected potential field approach turns out to be unstable regarding the positions of the robots within formations. The robots strive to switch their positions, e.g. when passing through narrow passages. Under such conditions the directed approach shows a preferable behaviour, called “breathing”. The formation shrinks or inflates depending on the obstacle situation while trying to maintain its shape and keep the robots at their desired positions inside the formation. For a more particular comparison of formation algorithms it is important to have measures that allow a meaningful evaluation of the experimental data. For this purpose a new formation metric is developed. If there are many obstacles, the formation error must be scaled down to be comparable to an empty environment where the error would be small. Assuming that the environment is unknown and possibly non-static, only actual sensor information can be used for these calculations. We developed a special weighting factor, which is inverse proportional to the “density” of obstacles and which turns out to model the influence of the environment adequately. 2. relative localisation A new method for relative localisation between the members of a robot group is introduced. This relative localisation approach uses mutual sensor observations to localise the robots with respect to other objects – without having an environment model. Techniques like the Extended Kalman Filter (EKF) have proven to be powerful tools in the field of single robot applications. This work presents extensions to these algorithms with respect to the use in MRS. These aspects are investigated and combined under the topic of improving and stabilising the performance of the localisation and navigation process. Most of the common localisation approaches use maps and/or landmarks with the intention of generating a globally consistent world-coordinate system for the robot group. The aim of the here presented relative localisation approach, on the other hand, is to maintain only relative positioning between the robots. The presented method enables a group of mobile robots to start at an unknown location in an unknown environment and then to incrementally estimate their own positions and the relative locations of the other robots using only sensor information. The result is a robust, fast and precise approach, which does not need any preconditions or special assumptions about the environment. To validate the approach extensive tests with both, real and simulated, robots have been conducted. For a more specific evaluation, the Mean Localisation Error (MLE) is introduced. The conducted experiments include a comparison between the proposed Extended Kalman Filter and a standard SLAM-based approach. The developed method robustly delivered an accuracy better than 2 cm and performed at least as well as the SLAM approach. The algorithm coped with scattered groups of robots while moving on arbitrarily shaped paths. In summary, this thesis presents novel approaches to the field of coordinated navigation in multi-robot systems. The results facilitate cooperative movements of robot groups as well as relative localisation among the group members. In addition, a solid foundation for a non-environment related metric for formation navigation is introduced

    A robot swarm assisting a human fire-fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire-fighters. The large dimensions, together with the development of dense smoke that drastically reduces visibility, represent major challenges. The GUARDIANS robot swarm is designed to assist fire-fighters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting fire-fighters. We explain the swarming algorithms that provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus, the robot swarm is able to provide guidance information to the humans. Together with the fire-fighters we explored how the robot swarm should feed information back to the human fire-fighter. We have designed and experimented with interfaces for presenting swarm-based information to human beings

    GUARDIANS final report part 1 (draft): a robot swarm assisting a human fire fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire fighters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist re ghters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting re ghters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus the robot swarm is able to provide guidance information to the humans. Together with the fire fighters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied environments

    Get PDF
    This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation.Peer ReviewedPostprint (published version

    Learning Matchable Image Transformations for Long-term Metric Visual Localization

    Full text link
    Long-term metric self-localization is an essential capability of autonomous mobile robots, but remains challenging for vision-based systems due to appearance changes caused by lighting, weather, or seasonal variations. While experience-based mapping has proven to be an effective technique for bridging the `appearance gap,' the number of experiences required for reliable metric localization over days or months can be very large, and methods for reducing the necessary number of experiences are needed for this approach to scale. Taking inspiration from color constancy theory, we learn a nonlinear RGB-to-grayscale mapping that explicitly maximizes the number of inlier feature matches for images captured under different lighting and weather conditions, and use it as a pre-processing step in a conventional single-experience localization pipeline to improve its robustness to appearance change. We train this mapping by approximating the target non-differentiable localization pipeline with a deep neural network, and find that incorporating a learned low-dimensional context feature can further improve cross-appearance feature matching. Using synthetic and real-world datasets, we demonstrate substantial improvements in localization performance across day-night cycles, enabling continuous metric localization over a 30-hour period using a single mapping experience, and allowing experience-based localization to scale to long deployments with dramatically reduced data requirements.Comment: In IEEE Robotics and Automation Letters (RA-L) and presented at the IEEE International Conference on Robotics and Automation (ICRA'20), Paris, France, May 31-June 4, 202

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Multi-robot team formation control in the GUARDIANS project

    Get PDF
    Purpose The GUARDIANS multi-robot team is to be deployed in a large warehouse in smoke. The team is to assist firefighters search the warehouse in the event or danger of a fire. The large dimensions of the environment together with development of smoke which drastically reduces visibility, represent major challenges for search and rescue operations. The GUARDIANS robots guide and accompany the firefighters on site whilst indicating possible obstacles and the locations of danger and maintaining communications links. Design/methodology/approach In order to fulfill the aforementioned tasks the robots need to exhibit certain behaviours. Among the basic behaviours are capabilities to stay together as a group, that is, generate a formation and navigate while keeping this formation. The control model used to generate these behaviours is based on the so-called social potential field framework, which we adapt to the specific tasks required for the GUARDIANS scenario. All tasks can be achieved without central control, and some of the behaviours can be performed without explicit communication between the robots. Findings The GUARDIANS environment requires flexible formations of the robot team: the formation has to adapt itself to the circumstances. Thus the application has forced us to redefine the concept of a formation. Using the graph-theoretic terminology, we can say that a formation may be stretched out as a path or be compact as a star or wheel. We have implemented the developed behaviours in simulation environments as well as on real ERA-MOBI robots commonly referred to as Erratics. We discuss advantages and shortcomings of our model, based on the simulations as well as on the implementation with a team of Erratics.</p

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved
    corecore