2,179 research outputs found

    Performance Analysis of Bearings-only Tracking Problems for Maneuvering Target and Heterogeneous Sensor Applications

    Get PDF
    State estimation, i.e. determining the trajectory, of a maneuvering target from noisy measurements collected by a single or multiple passive sensors (e.g. passive sonar and radar) has wide civil and military applications, for example underwater surveillance, air defence, wireless communications, and self-protection of military vehicles. These passive sensors are listening to target emitted signals without emitting signals themselves which give them concealing properties. Tactical scenarios exists where the own position shall not be revealed, e.g. for tracking submarines with passive sonar or tracking an aerial target by means of electro-optic image sensors like infrared sensors. This estimation process is widely known as bearings-only tracking. On the one hand, a challenge is the high degree of nonlinearity in the estimation process caused by the nonlinear relation of angular measurements to the Cartesian state. On the other hand, passive sensors cannot provide direct target location measurements, so bearings-only tracking suffers from poor target trajectory estimation accuracy due to marginal observability from sensor measurements. In order to achieve observability, that means to be able to estimate the complete target state, multiple passive sensor measurements must be fused. The measurements can be recorded spatially distributed by multiple dislocated sensor platforms or temporally distributed by a single, moving sensor platform. Furthermore, an extended case of bearings-only tracking is given if heterogeneous measurements from targets emitting different types of signals, are involved. With this, observability can also be achieved on a single, not necessarily moving platform. In this work, a performance bound for complex motion models, i.e. piecewisely maneuvering targets with unknown maneuver change times, by means of bearings-only measurements from a single, moving sensor platform is derived and an efficient estimator is implemented and analyzed. Furthermore, an observability analysis is carried out for targets emitting acoustic and electromagnetic signals. Here, the different signal propagation velocities can be exploited to ensure observability on a single, not necessarily moving platform. Based on the theoretical performance and observability analyses a distributed fusion system has been realized by means of heterogeneous sensors, which shall detect an event and localize a threat. This is performed by a microphone array to detect sound waves emitted by the threat as well as a radar detector that detects electromagnetic emissions from the threat. Since multiple platforms are involved to provide increased observability and also redundancy against possible breakdowns, a WiFi mobile ad hoc network is used for communications. In order to keep up the network in a breakdown OLSR (optimized link state routing) routing approach is employed

    Biologically inspired learning system

    Get PDF
    Learning Systems used on robots require either a-priori knowledge in the form of models, rules of thumb or databases or require that robot to physically execute multitudes of trial solutions. The first requirement limits the robot’s ability to operate in unstructured changing environments, and the second limits the robot’s service life and resources. In this research a generalized approach to learning was developed through a series of algorithms that can be used for construction of behaviors that are able to cope with unstructured environments through adaptation of both internal parameters and system structure as a result of a goal based supervisory mechanism. Four main learning algorithms have been developed, along with a goal directed random exploration routine. These algorithms all use the concept of learning from a recent memory in order to save the robot/agent from having to exhaustively execute all trial solutions. The first algorithm is a reactive online learning algorithm that uses a supervised learning to find the sensor/action combinations that promote realization of a preprogrammed goal. It produces a feed forward neural network controller that is used to control the robot. The second algorithm is similar to first in that it uses a supervised learning strategy, but it produces a neural network that considers past values, thus providing a non-reactive solution. The third algorithm is a departure from the first two in that uses a non-supervised learning technique to learn the best actions for each situation the robot encounters. The last algorithm builds a graph of the situations encountered by agent/robot in order to learn to associate the best actions with sensor inputs. It uses an unsupervised learning approach based on shortest paths to a goal situation in the graph in order to generate a non-reactive feed forward neural network. Test results were good, the first and third algorithms were tested in a formation maneuvering task in both simulation and onboard mobile robots, while the second and fourth were tested simulation

    Aeronautical Engineering: A continuing bibliography, supplement 120

    Get PDF
    This bibliography contains abstracts for 297 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1980

    Summary of Research 2000, Department of Mechanical Engineering

    Get PDF
    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or U.S. Government.This report contains project summaries of the research projects in the Department of Mechanical Engineering. A list of recent publications is also included, which consists of conference presentations and publications, books, contributions to books, published journal papers, and technical reports. Thesis abstracts of students advised by faculty in the Department are also included

    Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 3: ARAMIS overview

    Get PDF
    An overview of automation, robotics, and machine intelligence systems (ARAMIS) is provided. Man machine interfaces, classification, and capabilities are considered

    Space Station RT and E Utilization Study

    Get PDF
    Descriptive information on a set of 241 mission concepts was reviewed to establish preliminary Space Station outfitting needs for technology development missions. The missions studied covered the full range of in-space technology development activities envisioned for early Space Station operations and included both pressurized volume and attached payload requirements. Equipment needs were compared with outfitting plans for the life sciences and microgravity user communities, and a number of potential outfitting additions were identified. Outfitting implementation was addressed by selecting a strawman mission complement for each of seven technical themes, by organizing the missions into flight scenarios, and by assessing the associated outfitting buildup for planning impacts

    Vision technology/algorithms for space robotics applications

    Get PDF
    The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed

    Columbia's first flight shakes down space transportation system

    Get PDF
    The first space shuttle mission is described. Topics include launch preparations, flight profile, trajectory, and landing operations. The spaceflight tracking and data network is discussed and the photography and television schedules are included

    Automated tracking of the Florida manatee (Trichechus manatus)

    Get PDF
    The electronic, physical, biological and environmental factors involved in the automated remote tracking of the Florida manatee (Trichechus manatus) are identified. The current status of the manatee as an endangered species is provided. Brief descriptions of existing tracking and position locating systems are presented to identify the state of the art in these fields. An analysis of energy media is conducted to identify those with the highest probability of success for this application. Logistic questions such as the means of attachment and position of any equipment to be placed on the manatee are also investigated. Power sources and manateeborne electronics encapsulation techniques are studied and the results of a compter generated DF network analysis are summarized
    • …
    corecore